Found problems: 1679
2011 Math Prize For Girls Problems, 9
Let $ABC$ be a triangle. Let $D$ be the midpoint of $\overline{BC}$, let $E$ be the midpoint of $\overline{AD}$, and let $F$ be the midpoint of $\overline{BE}$. Let $G$ be the point where the lines $AB$ and $CF$ intersect. What is the value of $\frac{AG}{AB}$?
2014 Online Math Open Problems, 27
A frog starts at $0$ on a number line and plays a game. On each turn the frog chooses at random to jump $1$ or $2$ integers to the right or left. It stops moving if it lands on a nonpositive number or a number on which it has already landed. If the expected number of times it will jump is $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$, find $p+q$.
[i]Proposed by Michael Kural[/i]
1981 Vietnam National Olympiad, 3
A plane $\rho$ and two points $M, N$ outside it are given. Determine the point $A$ on $\rho$ for which $\frac{AM}{AN}$ is minimal.
2012 Canadian Mathematical Olympiad Qualification Repechage, 4
Let $ABC$ be a triangle such that $\angle BAC = 90^\circ$ and $AB < AC$. We divide the interior of the triangle into the following six regions: \begin{align*}
S_1=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PA<PB<PC \\
S_2=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PA<PC<PB \\
S_3=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PB<PA<PC \\
S_4=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PB<PC<PA \\
S_5=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PC<PA<PB \\
S_6=\text{set of all points }\mathit{P}\text{ inside }\triangle ABC\text{ such that }PC<PB<PA\end{align*} Suppose that the ratio of the area of the largest region to the area of the smallest non-empty region is $49 : 1$. Determine the ratio $AC : AB$.
2017 AMC 10, 11
At Typico High School, $60\%$ of the students like dancing, and the rest dislike it. Of those who like dancing, $80\%$ say that they like it, and the rest say that they dislike it. Of those who dislike dancing, $90\%$ say that they dislike it, and the rest say that they like it. What fraction of students who say they dislike dancing actually like it?
$\textbf{(A) } 10\%\qquad \textbf{(B) } 12\%\qquad \textbf{(C) } 20\%\qquad \textbf{(D) } 25\%\qquad \textbf{(E) } 33\frac{1}{3}\%$
1968 AMC 12/AHSME, 35
In this diagram the center of the circle is $O$, the radius is $a$ inches, chord $EF$ is parallel to chord $CD, O, G, H, J$ are collinear, and $G$ is the midpoint of $CD$. Let $K$ (sq. in.) represent the area of trapezoid $CDFE$ and let $R$ (sq. in.) represent the area of rectangle $ELMF$. Then, as $CD$ and $EF$ are translated upward so that $OG$ increases toward the value $a$, while $JH$ always equals $HG$, the ratio $K:R$ become arbitrarily close to:
[asy]
size((270));
draw((0,0)--(10,0)..(5,5)..(0,0));
draw((5,0)--(5,5));
draw((9,3)--(1,3)--(1,1)--(9,1)--cycle);
draw((9.9,1)--(.1,1));
label("O", (5,0), S);
label("a", (7.5,0), S);
label("G", (5,1), SE);
label("J", (5,5), N);
label("H", (5,3), NE);
label("E", (1,3), NW);
label("L", (1,1), S);
label("C", (.1,1), W);
label("F", (9,3), NE);
label("M", (9,1), S);
label("D", (9.9,1), E);
[/asy]
$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ \sqrt{2} \qquad\textbf{(D)}\ \frac{1}{\sqrt{2}}+\frac{1}{2} \qquad\textbf{(E)}\ \frac{1}{\sqrt{2}}+1$
2006 Iran MO (3rd Round), 1
Prove that in triangle $ABC$, radical center of its excircles lies on line $GI$, which $G$ is Centroid of triangle $ABC$, and $I$ is the incenter.
1998 Brazil Team Selection Test, Problem 2
There are $n\ge3$ integers around a circle. We know that for each of these numbers the ratio between the sum of its two neighbors and the number is a positive integer. Prove that the sum of the $n$ ratios is not greater than $3n$.
1946 Moscow Mathematical Olympiad, 122
On the sides $PQ, QR, RP$ of $\vartriangle PQR$ segments $AB, CD, EF$ are drawn. Given a point $S_0$ inside triangle $\vartriangle PQR$, find the locus of points $S$ for which the sum of the areas of triangles $\vartriangle SAB$, $\vartriangle SCD$ and $\vartriangle SEF$ is equal to the sum of the areas of triangles $\vartriangle S_0AB$, $\vartriangle S_0CD$, $\vartriangle S0EF$. Consider separately the case $$\frac{AB}{PQ }= \frac{CD}{QR} = \frac{EF}{RP}.$$
2012 Junior Balkan Team Selection Tests - Romania, 3
Consider the triangle $ABC$ and the points $D \in (BC)$ and $M \in (AD)$. Lines $BM$ and $AC$ meet at $E$, lines $CM$ and $AB$ meet at $F$, and lines $EF$ and $AD$ meet at $N$. Prove that $$\frac{AN}{DN}=\frac{1}{2}\cdot \frac{AM}{DM}$$
1976 IMO Longlists, 17
Show that there exists a convex polyhedron with all its vertices on the surface of a sphere and with all its faces congruent isosceles triangles whose ratio of sides are $\sqrt{3} :\sqrt{3} :2$.
2007 AMC 8, 2
Six-hundred fifty students were surveyed about their pasta preferences. The choices were lasagna, manicotti, ravioli and spaghetti. The results of the survey are displayed in the bar graph. What is the ratio of the number of students who preferred spaghetti to the number of students who preferred manicotti?
[asy]
size(200);
defaultpen(linewidth(0.7));
defaultpen(fontsize(8));
draw(origin--(0,250));
int i;
for(i=0; i<6; i=i+1) {
draw((0,50*i)--(5,50*i));
}
filldraw((25,0)--(75,0)--(75,150)--(25,150)--cycle, gray, black);
filldraw((75,0)--(125,0)--(125,100)--(75,100)--cycle, gray, black);
filldraw((125,0)--(175,0)--(175,150)--(125,150)--cycle, gray, black);
filldraw((225,0)--(175,0)--(175,250)--(225,250)--cycle, gray, black);
label("$50$", (0,50), W);
label("$100$", (0,100), W);
label("$150$", (0,150), W);
label("$200$", (0,200), W);
label("$250$", (0,250), W);
label(rotate(90)*"Lasagna", (50,0), S);
label(rotate(90)*"Manicotti", (100,0), S);
label(rotate(90)*"Ravioli", (150,0), S);
label(rotate(90)*"Spaghetti", (200,0), S);
label(rotate(90)*"$\mbox{Number of People}$", (-40,140), W);[/asy]
$\textbf{(A)} \: \frac25\qquad \textbf{(B)} \: \frac12\qquad \textbf{(C)} \: \frac54\qquad \textbf{(D)} \: \frac53\qquad \textbf{(E)} \: \frac52$
2012 AIME Problems, 15
Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.
1999 Bulgaria National Olympiad, 3
The vertices of a triangle have integer coordinates and one of its sides is of length $\sqrt{n}$, where $n$ is a square-free natural number. Prove that the ratio of the circumradius and the inradius is an irrational number.
2004 Iran MO (3rd Round), 7
Suppose $F$ is a polygon with lattice vertices and sides parralell to x-axis and y-axis.Suppose $S(F),P(F)$ are area and perimeter of $F$.
Find the smallest k that:
$S(F) \leq k.P(F)^2$
1999 Turkey Team Selection Test, 2
Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.
2004 Flanders Math Olympiad, 1
[u][b]The author of this posting is : Peter VDD[/b][/u]
____________________________________________________________________
most of us didn't really expect to get this, but here it goes (flanders mathematical olympiad 2004, today)
triangle with sides 501m, 668m, 835m
how many lines can be draws so that the line halves both area and circumference?
1956 AMC 12/AHSME, 16
The sum of three numbers is $ 98$. The ratio of the first to the second is $ \frac {2}{3}$, and the ratio of the second to the third is $ \frac {5}{8}$. The second number is:
$ \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 30 \qquad\textbf{(D)}\ 32 \qquad\textbf{(E)}\ 33$
2009 All-Russian Olympiad, 2
Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.
1995 AMC 12/AHSME, 19
Equilateral triangle $DEF$ is inscribed in equilateral triangle $ABC$ such that $\overline{DE} \perp \overline{BC}$. The ratio of the area of $\triangle DEF$ to the area of $\triangle ABC$ is
[asy]
size(180);
pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10);
pair B = (0,0), C = (1,0), A = dir(60), D = C*2/3, E = (2*A+C)/3, F = (2*B+A)/3;
D(D("A",A,N)--D("B",B,SW)--D("C",C,SE)--cycle); D(D("D",D)--D("E",E,NE)--D("F",F,NW)--cycle); D(rightanglemark(C,D,E,1.5));[/asy]
$\textbf{(A)}\ \dfrac{1}{6}\qquad
\textbf{(B)}\ \dfrac{1}{4} \qquad
\textbf{(C)}\ \dfrac{1}{3} \qquad
\textbf{(D)}\ \dfrac{2}{5} \qquad
\textbf{(E)}\ \dfrac{1}{2}$
1999 Finnish National High School Mathematics Competition, 4
Three unit circles have a common point $O.$ The other points of (pairwise) intersection are $A, B$ and $C$. Show that the points $A, B$ and $C$ are located on some unit circle.
2011 Balkan MO Shortlist, C2
Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.
1982 AMC 12/AHSME, 10
In the adjoining diagram, $BO$ bisects $\angle CBA$, $CO$ bisects $\angle ACB$, and $MN$ is parallel to $BC$. If $AB=12$, $BC=24$, and $AC=18$, then the perimeter of $\triangle AMN$ is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0));
draw(B--M--O--B--C--O--N--C^^N--A--M);
label("$A$", A, dir(90));
label("$B$", B, dir(O--B));
label("$C$", C, dir(O--C));
label("$M$", M, dir(90)*dir(B--A));
label("$N$", N, dir(90)*dir(A--C));
label("$O$", O, dir(90));[/asy]
$\textbf {(A) } 30 \qquad \textbf {(B) } 33 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 42$
2005 AMC 10, 25
In $ ABC$ we have $ AB \equal{} 25$, $ BC \equal{} 39$, and $ AC \equal{} 42$. Points $ D$ and $ E$ are on $ AB$ and $ AC$ respectively, with $ AD \equal{} 19$ and $ AE \equal{} 14$. What is the ratio of the area of triangle $ ADE$ to the area of quadrilateral $ BCED$?
$ \textbf{(A)}\ \frac{266}{1521}\qquad
\textbf{(B)}\ \frac{19}{75}\qquad
\textbf{(C)}\ \frac{1}{3}\qquad
\textbf{(D)}\ \frac{19}{56}\qquad
\textbf{(E)}\ 1$
2022 Durer Math Competition Finals, 5
On a circle $k$, we marked four points $(A, B, C, D)$ and drew pairwise their connecting segments. We denoted angles as seen on the diagram. We know that $\alpha_1 : \alpha_2 = 2 : 5$, $\beta_1 : \beta_2 = 7 : 11$, and $\gamma_1 : \gamma_2 = 10 : 3$. If $\delta_1 : \delta_2 = p : q$, where $p$ and $q$ are coprime positive integers, then what is $p$?
[img]https://cdn.artofproblemsolving.com/attachments/c/e/b532dd164a7cf99cea7b3b7d98f81796622da5.png[/img]