This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1989 Greece National Olympiad, 3

Find the limit of the sequence $x_n$ defined by recurrence relation $$x_{n+2}=\frac{1}{12}x_{n+1}+\frac{1}{2}x_{n}+1$$ where $n=0,1,2,...$ for any initial values $x_2,x_1$.

2000 Romania National Olympiad, 2

For any partition $ P $ of $ [0,1] $ , consider the set $$ \mathcal{A}(P)=\left\{ f:[0,1]\longrightarrow\mathbb{R}\left| \exists f’\bigg|_{[0,1]}\right.\wedge\int_0^1 |f(x)|dx =1\wedge \left( y\in P\implies f (y ) =0\right)\right\} . $$ Prove that there exists a partition $ P_0 $ of $ [0,1] $ such that $$ g\in \mathcal{A}\left( P_0\right)\implies \sup_{x\in [0,1]} \big| g’(x)\big| >4\cdot \# P. $$ Here, $ \# D $ denotes the natural number $ d $ such that $ 0=x_0<x_1<\cdots <x_d=1 $ is a partition $ D $ of $ [0,1] . $

2015 IMAR Test, 4

(a) Show that, if $I \subset R$ is a closed bounded interval, and $f : I \to R$ is a non-constant monic polynomial function such that $max_{x\in I}|f(x)|< 2$, then there exists a non-constant monic polynomial function $g : I \to R$ such that $max_{x\in I} |g(x)| < 1$. (b) Show that there exists a closed bounded interval $I \subset R$ such that $max_{x\in I}|f(x)| \ge 2$ for every non-constant monic polynomial function $f : I \to R$.

ICMC 7, 4

Let $(t_n)_{n\geqslant 1}$ be the sequence defined by $t_1=1, t_{2k}=-t_k$ and $t_{2k+1}=t_{k+1}$ for all $k\geqslant 1.$ Consider the series \[\sum_{n=1}^\infty\frac{t_n}{n^{1/2024}}.\]Prove that this series converges to a positive real number. [i]Proposed by Dylan Toh[/i]

2011 N.N. Mihăileanu Individual, 4

[b]a)[/b] Prove that there exists an unique sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ satisfying $$ -\text{ctg} x_n=x_n\in\left( (2n+1)\pi /2,(n+1)\pi \right) , $$ for any nonnegative integer $ n. $ [b]b)[/b] Show that $ \lim_{n\to\infty } \left( \frac{x_n}{(n+1)\pi } \right)^{n^2} =e^{-1/\pi^2} . $ [i]Cătălin Zârnă[/i]

2006 All-Russian Olympiad, 1

Prove that $\sin\sqrt{x}<\sqrt{\sin x}$ for every real $x$ such that $0<x<\frac{\pi}{2}$.

Kvant 2020, M413

Determine the positive numbers $a{}$ for which the following statement true: for any function $f:[0,1]\to\mathbb{R}$ which is continuous at each point of this interval and for which $f(0)=f(1)=0$, the equation $f(x+a)-f(x)=0$ has at least one solution. [i]Proposed by I. Yaglom[/i]

2020 ISI Entrance Examination, 4

Let a real-valued sequence $\{x_n\}_{n\geqslant 1}$ be such that $$\lim_{n\to\infty}nx_n=0$$ Find all possible real values of $t$ such that $\lim_{n\to\infty}x_n\big(\log n\big)^t=0$ .

2003 China Team Selection Test, 1

Let $S$ be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant $r$, such that there exists one way to colour all the points in $S$ with three colous so that the distance between any two points with same colour is less than $r$.

2007 Mathematics for Its Sake, 1

Find the number of extrema of the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ f(x)=\prod_{j=1}^n (x-j)^j, $$ where $ n $ is a natural number.

2008 District Olympiad, 3

Let $(x_n)_{n\ge 1}$ and $(y_n)_{n\ge 1}$ a sequence of positive real numbers, such that: \[x_{n+1}\ge \frac{x_n+y_n}{2},\ y_{n+1}\ge \sqrt{\frac{x_n^2+y_n^2}{2}},\ (\forall)n\in \mathbb{N}^*\] a) Prove that the sequences $(x_n+y_n)_{n\ge 1}$ and $(x_ny_n)_{n\ge 1}$ have limit. b) Prove that the sequences $(x_n)_{n\ge 1}$ and $(y_n)_{n\ge 1}$ have limit and that their limits are equal.

2024 Brazil Undergrad MO, 4

We say that a function \( f: \mathbb{R} \to \mathbb{R} \) is morally odd if its graph is symmetric with respect to a point, that is, there exists \((x_0, y_0) \in \mathbb{R}^2\) such that if \((u, v) \in \{(x, f(x)) : x \in \mathbb{R}\}\), then \((2x_0 - u, 2y_0 - v) \in \{(x, f(x)) : x \in \mathbb{R}\}\). On the other hand, \( f \) is said to be morally even if its graph \(\{(x, f(x)) : x \in \mathbb{R}\}\) is symmetric with respect to some line (not necessarily vertical or horizontal). If \( f \) is morally even and morally odd, we say that \( f \) is parimpar. (a) Let \( S \subset \mathbb{R} \) be a bounded set and \( f: S \to \mathbb{R} \) be an arbitrary function. Prove that there exists \( g: \mathbb{R} \to \mathbb{R} \) that is parimpar such that \( g(x) = f(x) \) for all \( x \in S \). (b) Find all polynomials \( P \) with real coefficients such that the corresponding polynomial function \( P: \mathbb{R} \to \mathbb{R} \) is parimpar.

1981 Miklós Schweitzer, 6

Let $ f$ be a strictly increasing, continuous function mapping $ I=[0,1]$ onto itself. Prove that the following inequality holds for all pairs $ x,y \in I$: \[ 1-\cos (xy) \leq \int_0^xf(t) \sin (tf(t))dt + \int_0^y f^{-1}(t) \sin (tf^{-1}(t)) dt .\] [i]Zs. Pales[/i]

2003 IMC, 3

Let $A$ be a closed subset of $\mathbb{R}^{n}$ and let $B$ be the set of all those points $b \in \mathbb{R}^{n}$ for which there exists exactly one point $a_{0}\in A $ such that $|a_{0}-b|= \inf_{a\in A}|a-b|$. Prove that $B$ is dense in $\mathbb{R}^{n}$; that is, the closure of $B$ is $\mathbb{R}^{n}$

2000 IMC, 1

Does every monotone increasing function $f : \mathbb[0,1] \rightarrow \mathbb[0,1]$ have a fixed point? What about every monotone decreasing function?

2002 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a continuous and bounded function such that \[x\int_{x}^{x+1}f(t)\, \text{d}t=\int_{0}^{x}f(t)\, \text{d}t,\quad\text{for any}\ x\in\mathbb{R}.\] Prove that $f$ is a constant function.

2018 IMC, 10

For $R>1$ let $\mathcal{D}_R =\{ (a,b)\in \mathbb{Z}^2: 0<a^2+b^2<R\}$. Compute $$\lim_{R\rightarrow \infty}{\sum_{(a,b)\in \mathcal{D}_R}{\frac{(-1)^{a+b}}{a^2+b^2}}}.$$ [i]Proposed by Rodrigo Angelo, Princeton University and Matheus Secco, PUC, Rio de Janeiro[/i]

2005 Brazil Undergrad MO, 5

Prove that \[ \sum_{n=1}^\infty {1\over n^n} = \int_0^1 x^{-x}\,dx. \]

2008 Grigore Moisil Intercounty, 2

Let $ n\in \mathbb{N^*}$ and $ f: [0,1]\rightarrow \mathbb{R}$ a continuos function with the prop. $ \int_{0}^{1}(1\minus{}x^n)f(x)dx\equal{}0$. Prove that $ \int_{0}^{1}f^2(x)dx \geq 2(n\plus{}1)\left(\int_{0}^{1}f(x)dx\right)^2$

1963 Miklós Schweitzer, 7

Prove that for every convex function $ f(x)$ defined on the interval $ \minus{}1\leq x \leq 1$ and having absolute value at most $ 1$, there is a linear function $ h(x)$ such that \[ \int_{\minus{}1}^1|f(x)\minus{}h(x)|dx\leq 4\minus{}\sqrt{8}.\] [L. Fejes-Toth]

1986 Traian Lălescu, 1.3

Let be four real numbers. Find the polynom of least degree such that two of these numbers are some locally extreme values, and the other two are the respective points of local extrema.

2020 Jozsef Wildt International Math Competition, W4

Let $(a_n)_{n\ge1}$ be a positive real sequence such that $$\lim_{n\to\infty}\frac{a_n}n=a\in\mathbb R^*_+\enspace\text{and}\enspace\lim_{n\to\infty}\left(\frac{a_{n+1}}{a_n}\right)^n=b\in\mathbb R^*_+$$ Compute $$\lim_{n\to\infty}(a_{n+1}-a_n)$$ [i]Proposed by D.M. Bătinețu-Giurgiu and Neculai Stanciu[/i]

2001 District Olympiad, 3

Let $f:\mathbb{R}\to \mathbb{R}$ a function which transforms any closed bounded interval in a closed bounded interval and any open bounded interval in an open bounded interval. Prove that $f$ is continuous. [i]Mihai Piticari[/i]

2019 AMC 10, 24

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\] for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\] In which of the following intervals does $m$ lie? $\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a number $ t\in (0,1) $ and $ n+1 $ numbers $ a_0\ge a_1\ge a_2\ge\cdots\ge a_n\ge 0. $ Prove the following matrix inequality: $$ \begin{vmatrix}\frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0& 0 & \cdots & 0 & 0 \\ 0 & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 \\ a_0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}^2\le a_0^2\left( 1+\frac{1}{t^2} \right) $$