This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2016 Romania National Olympiad, 1

Prove that there exists an unique sequence $ \left( c_n \right)_{n\ge 1} $ of real numbers from the interval $ (0,1) $ such that$$ \int_0^1 \frac{dx}{1+x^m} =\frac{1}{1+c_m^m } , $$ for all natural numbers $ m, $ and calculate $ \lim_{k\to\infty } kc_k^k. $ [i]Radu Pop[/i]

1983 Miklós Schweitzer, 9

Prove that if $ E \subset \mathbb{R}$ is a bounded set of positive Lebesgue measure, then for every $ u < 1/2$, a point $ x\equal{}x(u)$ can be found so that \[ |(x\minus{}h,x\plus{}h) \cap E| \geq uh\] and \[ |(x\minus{}h,x\plus{}h) \cap (\mathbb{R} \setminus E)| \geq uh\] for all sufficiently small positive values of $ h$. [i]K. I. Koljada[/i]

1978 Miklós Schweitzer, 6

Suppose that the function $ g : (0,1) \rightarrow \mathbb{R}$ can be uniformly approximated by polynomials with nonnegative coefficients. Prove that $ g$ must be analytic. Is the statement also true for the interval $ (\minus{}1,0)$ instead of $ (0,1)$? [i]J. Kalina, L. Lempert[/i]

2012 Grigore Moisil Intercounty, 2

Let $ \left( x_n \right)_{n\ge 0} $ be a sequence of positive real numbers with $ x_0=1 $ and defined recursively: $$ x_{n+1}=x_n+\frac{x_0}{x_1+x_2+\cdots +x_n} $$ [b]a)[/b] Show that $ \lim_{n\to\infty } x_n=\infty . $ [b]b)[/b] Calculate $ \lim_{n\to\infty }\frac{x_n}{\sqrt{\ln n}} . $ [i]Ovidiu Furdui[/i]

1997 Romania National Olympiad, 3

Let $\mathcal{F}$ be the set of the differentiable functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $f(x) \ge f(x+ \sin x)$ for any $x \in \mathbb{R}.$ a) Prove that there exist nonconstant functions in $\mathcal{F}.$ b) Prove that if $f \in \mathcal{F},$ then the set of solutions of the equation $f'(x)=0$ is infinite.

2016 Korea USCM, 2

Suppose $\{a_n\}$ is a decreasing sequence of reals and $\lim\limits_{n\to\infty} a_n = 0$. If $S_{2^k} - 2^k a_{2^k} \leq 1$ for any positive integer $k$, show that $$\sum_{n=1}^{\infty} a_n \leq 1$$ (At here, $S_m = \sum_{n=1}^m a_n$ is a partial sum of $\{a_n\}$.)

2003 Tuymaada Olympiad, 4

Find all continuous functions $f(x)$ defined for all $x>0$ such that for every $x$, $y > 0$ \[ f\left(x+{1\over x}\right)+f\left(y+{1\over y}\right)= f\left(x+{1\over y}\right)+f\left(y+{1\over x}\right) . \] [i]Proposed by F. Petrov[/i]

2019 Ramnicean Hope, 2

Calculate $ \inf_{x> 0} \sqrt{(1+x)^2+4/x} . $ [i]Constantin Rusu[/i] and [i]Mihai Neagu[/i]

2008 Moldova National Olympiad, 12.2

Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.

2004 VJIMC, Problem 3

Denote by $B(c,r)$ the open disk of center $c$ and radius $r$ in the plane. Decide whether there exists a sequence $\{z_n\}^\infty_{n=1}$ of points in $\mathbb R^2$ such that the open disks $B(z_n,1/n)$ are pairwise disjoint and the sequence $\{z_n\}^\infty_{n=1}$ is convergent.

2008 District Olympiad, 2

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a countinuous and periodic function, of period $ T. $ If $ F $ is a primitive of $ f, $ show that: [b]a)[/b] the function $ G:\mathbb{R}\longrightarrow\mathbb{R}, G(x)=F(x)-\frac{x}{T}\int_0^T f(t)dt $ is periodic. [b]b)[/b] $ \lim_{n\to\infty}\sum_{i=1}^n\frac{F(i)}{n^2+i^2} =\frac{\ln 2}{2T}\int_0^T f(x)dx. $

1994 IMC, 3

Given a set $S$ of $2n-1$, $n\in \mathbb N$, different irrational numbers. Prove that there are $n$ different elements $x_1, x_2, \ldots, x_n\in S$ such that for all non-negative rational numbers $a_1, a_2, \ldots, a_n$ with $a_1+a_2+\ldots + a_n>0$ we have that $a_1x_1+a_2x_2+\cdots +a_nx_n$ is an irrational number.

1996 Miklós Schweitzer, 5

Let K and D be the set of convergent and divergent series of positive terms respectively. Does there exist a bijection between K and D such that for all $\sum a_n,\sum b_n\in K$ and $\sum a_n',\sum b_n'\in D$ , $\frac{a_n}{b_n}\to 0\iff \frac{a_n'}{b_n'}\to 0$ ? Under the bijection, $\sum a_n\leftrightarrow\sum a_n'$ and $\sum b_n\leftrightarrow\sum b_n'$.

2008 Grigore Moisil Intercounty, 1

Find the differentiable functions $ f:\mathbb{R}\longrightarrow (-\infty ,1) $ with the property $ f(1)=-1 $ and $$ f(x+y)=f(x)+f(y)-f(x)f(y) , $$ for any reals $ x,y. $ [i]Vasile Pop[/i]

1965 Miklós Schweitzer, 7

Prove that any uncountable subset of the Euclidean $ n$-space contains an countable subset with the property that the distances between different pairs of points are different (that is, for any points $ P_1 \not\equal{} P_2$ and $ Q_1\not\equal{} Q_2$ of this subset, $ \overline{P_1P_2}\equal{}\overline{Q_1Q_2}$ implies either $ P_1\equal{}Q_1$ and $ P_2\equal{}Q_2$, or $ P_1\equal{}Q_2$ and $ P_2\equal{}Q_1$). Show that a similar statement is not valid if the Euclidean $ n$-space is replaced with a (separable) Hilbert space.

2007 Miklós Schweitzer, 8

For an $A=\{ a_i\}^{\infty}_{i=0}$ sequence let $SA=\{ a_0, a_0+a_1, a_0+a_1+a_2, \ldots\}$ be the sequence of partial sums of the $a_0+a_1+\ldots$ series. Does there exist a non-identically zero sequence $A$ such that all of the sequences $A, SA, SSA, SSSA, \ldots$ are convergent? (translated by Miklós Maróti)

1980 Miklós Schweitzer, 1

For a real number $ x$, let $ \|x \|$ denote the distance between $ x$ and the closest integer. Let $ 0 \leq x_n <1 \; (n\equal{}1,2,\ldots)\ ,$ and let $ \varepsilon >0$. Show that there exist infinitely many pairs $ (n,m)$ of indices such that $ n \not\equal{} m$ and \[ \|x_n\minus{}x_m \|< \min \left( \varepsilon , \frac{1}{2|n\minus{}m|} \right).\] [i]V. T. Sos[/i]

2022 CIIM, 5

Define in the plane the sequence of vectors $v_1, v_2, \ldots$ with initial values $v_1 = (1, 0)$, $v_2 = (-1/\sqrt{2}, 1/\sqrt{2})$ and satisfying the relationship $$v_n=\frac{v_{n-1}+v_{n-2}}{\lVert v_{n-1}+v_{n-2}\rVert},$$ for $n \geq 3$. Show that the sequence is convergent and determine its limit. [b]Note:[/b] The expression $\lVert v \rVert$ denotes the length of the vector $v$.

2001 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow[0,\infty )$ be a function with the property that $|f(x)-f(y)|\le |x-y|$ for every $x,y\in\mathbb{R}$. Show that: a) If $\lim_{n\rightarrow \infty} f(x+n)=\infty$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\infty$. b) If $\lim_{n\rightarrow \infty} f(x+n)=\alpha ,\alpha\in[0,\infty )$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\alpha$.

1980 Miklós Schweitzer, 8

Let $ f(x)$ be a nonnegative, integrable function on $ (0,2\pi)$ whose Fourier series is $ f(x)\equal{}a_0\plus{}\sum_{k\equal{}1}^{\infty} a_k \cos (n_k x)$, where none of the positive integers $ n_k$ divides another. Prove that $ |a_k| \leq a_0$. [i]G. Halasz[/i]

2007 IMS, 8

Let \[T=\{(tq,1-t) \in\mathbb R^{2}| t \in [0,1],q\in\mathbb Q\}\]Prove that each continuous function $f: T\longrightarrow T$ has a fixed point.

2009 Miklós Schweitzer, 8

Let $ \{A_n\}_{n \in \mathbb{N}}$ be a sequence of measurable subsets of the real line which covers almost every point infinitely often. Prove, that there exists a set $ B \subset \mathbb{N}$ of zero density, such that $ \{A_n\}_{n \in B}$ also covers almost every point infinitely often. (The set $ B \subset \mathbb{N}$ is of zero density if $ \lim_{n \to \infty} \frac {\#\{B \cap \{0, \dots, n \minus{} 1\}\}}{n} \equal{} 0$.)

2001 IMC, 2

Let $a_{0}=\sqrt{2}, b_{0}=2,a_{n+1}=\sqrt{2-\sqrt{4-a_{n}^{2}}},b_{n+1}=\frac{2b_{n}}{2+\sqrt{4+b_{n}^{2}}}$. a) Prove that the sequences $(a_{n})$ and $(b_{n})$ are decreasing and converge to $0$. b) Prove that the sequence $(2^{n}a_{n})$ is increasing, the sequence $(2^{n}b_{n})$ is decreasing and both converge to the same limit. c) Prove that there exists a positive constant $C$ such that for all $n$ the following inequality holds: $0 <b_{n}-a_{n} <\frac{C}{8^{n}}$.

2015 Miklos Schweitzer, 9

For a function ${u}$ defined on ${G \subset \Bbb{C}}$ let us denote by ${Z(u)}$ the neignborhood of unit raduis of the set of roots of ${u}$. Prove that for any compact set ${K \subset G}$ there exists a constant ${C}$ such that if ${u}$ is an arbitrary real harmonic function on ${G}$ which vanishes in a point of ${K}$ then: \[\displaystyle \sup_{z \in K} |u(z)| \leq C \sup_{Z(u)\cap G}|u(z)|.\]

2006 Pre-Preparation Course Examination, 3

Show that if $f: [0,1]\rightarrow [0,1]$ is a continous function and it has topological transitivity then periodic points of $f$ are dense in $[0,1]$. Topological transitivity means there for every open sets $U$ and $V$ there is $n>0$ such that $f^n(U)\cap V\neq \emptyset$.