Found problems: 1001
2013 Online Math Open Problems, 9
Let $AXYZB$ be a regular pentagon with area $5$ inscribed in a circle with center $O$. Let $Y'$ denote the reflection of $Y$ over $\overline{AB}$ and suppose $C$ is the center of a circle passing through $A$, $Y'$ and $B$. Compute the area of triangle $ABC$.
[i]Proposed by Evan Chen[/i]
2011 Germany Team Selection Test, 2
Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$
[i]Proposed by Nazar Serdyuk, Ukraine[/i]
2005 Iran Team Selection Test, 2
Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that:
\[PX || AC \ , \ PY ||AB \]
Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$
1994 IMO Shortlist, 5
A circle $ C$ with center $ O.$ and a line $ L$ which does not touch circle $ C.$ $ OQ$ is perpendicular to $ L,$ $ Q$ is on $ L.$ $ P$ is on $ L,$ draw two tangents $ L_1, L_2$ to circle $ C.$ $ QA, QB$ are perpendicular to $ L_1, L_2$ respectively. ($ A$ on $ L_1,$ $ B$ on $ L_2$). Prove that, line $ AB$ intersect $ QO$ at a fixed point.
[i]Original formulation:[/i]
A line $ l$ does not meet a circle $ \omega$ with center $ O.$ $ E$ is the point on $ l$ such that $ OE$ is perpendicular to $ l.$ $ M$ is any point on $ l$ other than $ E.$ The tangents from $ M$ to $ \omega$ touch it at $ A$ and $ B.$ $ C$ is the point on $ MA$ such that $ EC$ is perpendicular to $ MA.$ $ D$ is the point on $ MB$ such that $ ED$ is perpendicular to $ MB.$ The line $ CD$ cuts $ OE$ at $ F.$ Prove that the location of $ F$ is independent of that of $ M.$
2007 Singapore Team Selection Test, 1
Two circles $ (O_1)$ and $ (O_2)$ touch externally at the point $C$ and internally at the points $A$ and $B$ respectively with another circle $(O)$. Suppose that the common tangent of $ (O_1)$ and $ (O_2)$ at $C$ meets $(O)$ at $P$ such that $PA=PB$. Prove that $PO$ is perpendicular to $AB$.
2008 Brazil Team Selection Test, 3
Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$.
Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$.
[i]Author: Farzan Barekat, Canada[/i]
2010 Princeton University Math Competition, 6
In the following diagram, a semicircle is folded along a chord $AN$ and intersects its diameter $MN$ at $B$. Given that $MB : BN = 2 : 3$ and $MN = 10$. If $AN = x$, find $x^2$.
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
real r = sqrt(80)/5;
pair M=(-1,0), N=(1,0), A=intersectionpoints(arc((M+N)/2, 1, 0, 180),circle(N,r))[0], C=intersectionpoints(circle(A,1),circle(N,1))[0], B=intersectionpoints(circle(C,1),M--N)[0];
draw(arc((M+N)/2, 1, 0, 180)--cycle); draw(A--N); draw(arc(C,1,180,180+2*aSin(r/2)));
label("$A$",D2(A),NW);
label("$B$",D2(B),SW);
label("$M$",D2(M),S);
label("$N$",D2(N),SE);
[/asy]
2017 Bulgaria EGMO TST, 2
Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$.
a) Prove that $M$, $T$, $K$ and $L$ are concyclic.
b) Determine the measure of $\angle BPC$.
2008 Tuymaada Olympiad, 3
Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$.
[i]Author: L. Emelyanov[/i]
2014 Tuymaada Olympiad, 2
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]
2010 Tournament Of Towns, 7
Several fleas sit on the squares of a $10\times 10$ chessboard (at most one fea per square). Every minute, all fleas simultaneously jump to adjacent squares. Each fea begins jumping in one of four directions (up, down, left, right), and keeps jumping in this direction while it is possible; otherwise, it reverses direction on the opposite. It happened that during one hour, no two fleas ever occupied the same square. Find the maximal possible number of fleas on the board.
Novosibirsk Oral Geo Oly VIII, 2022.2
A ball was launched on a rectangular billiard table at an angle of $45^o$ to one of the sides. Reflected from all sides (the angle of incidence is equal to the angle of reflection), he returned to his original position . It is known that one of the sides of the table has a length of one meter. Find the length of the second side.
[img]https://cdn.artofproblemsolving.com/attachments/3/d/e0310ea910c7e3272396cd034421d1f3e88228.png[/img]
2017 India IMO Training Camp, 2
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2012 Iran Team Selection Test, 1
Consider a regular $2^k$-gon with center $O$ and label its sides clockwise by $l_1,l_2,...,l_{2^k}$. Reflect $O$ with respect to $l_1$, then reflect the resulting point with respect to $l_2$ and do this process until the last side. Prove that the distance between the final point and $O$ is less than the perimeter of the $2^k$-gon.
[i]Proposed by Hesam Rajabzade[/i]
2010 Iran MO (3rd Round), 3
in a quadrilateral $ABCD$ digonals are perpendicular to each other. let $S$ be the intersection of digonals. $K$,$L$,$M$ and $N$ are reflections of $S$ to $AB$,$BC$,$CD$ and $DA$. $BN$ cuts the circumcircle of $SKN$ in $E$ and $BM$ cuts the circumcircle of $SLM$ in $F$. prove that $EFLK$ is concyclic.(20 points)
2008 Tuymaada Olympiad, 4
Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$.
[i]Author: L. Emelyanov[/i]
2012 Tournament of Towns, 5
Let $\ell$ be a tangent to the incircle of triangle $ABC$. Let $\ell_a,\ell_b$ and $\ell_c$ be the respective images of $\ell$ under reflection across the exterior bisector of $\angle A,\angle B$ and $\angle C$. Prove that the triangle formed by these lines is congruent to $ABC$.
2008 Turkey Junior National Olympiad, 1
Let $ABC$ be a right triangle with $m(\widehat {C}) = 90^\circ$, and $D$ be its incenter. Let $N$ be the intersection of the line $AD$ and the side $CB$. If $|CA|+|AD|=|CB|$, and $|CN|=2$, then what is $|NB|$?
2004 Turkey Team Selection Test, 2
Let $\triangle ABC$ be an acute triangle, $O$ be its circumcenter, and $D$ be a point different that $A$ and $C$ on the smaller $AC$ arc of its circumcircle. Let $P$ be a point on $[AB]$ satisfying $\widehat{ADP} = \widehat {OBC}$ and $Q$ be a point on $[BC]$ satisfying $\widehat{CDQ}=\widehat {OBA}$. Show that $\widehat {DPQ} = \widehat {DOC}$.
2010 Serbia National Math Olympiad, 1
Let $O$ be the circumcenter of triangle $ABC$. A line through $O$ intersects the sides $CA$ and $CB$ at points $D$ and $E$ respectively, and meets the circumcircle of $ABO$ again at point $P \neq O$ inside the triangle. A point $Q$ on side $AB$ is such that $\frac{AQ}{QB}=\frac{DP}{PE}$. Prove that $\angle APQ = 2\angle CAP$.
[i]Proposed by Dusan Djukic[/i]
2015 Belarus Team Selection Test, 2
In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.
2010 Danube Mathematical Olympiad, 2
Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.
2008 India Regional Mathematical Olympiad, 1
Let $ ABC$ be an acute angled triangle; let $ D,F$ be the midpoints of $ BC,AB$ respectively. Let the perpendicular from $ F$ to $ AC$ and the perpendicular from $ B$ ti $ BC$ meet in $ N$: Prove that $ ND$ is the circumradius of $ ABC$.
[15 points out of 100 for the 6 problems]
2009 IMO Shortlist, 2
Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$
[i]Proposed by Sergei Berlov, Russia [/i]
1992 AMC 12/AHSME, 12
Let $y = mx + b$ be the image when the line $x - 3y + 11 = 0$ is reflected across the x-axis. The value of $m + b$ is
$ \textbf{(A)}\ -6\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -4\qquad\textbf{(D)}\ -3\qquad\textbf{(E)}\ -2 $