This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2013 ELMO Shortlist, 2

Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent. [i]Proposed by Michael Kural[/i]

2013 China Team Selection Test, 1

The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.

2004 Bundeswettbewerb Mathematik, 2

Let $k$ be a positive integer. In a circle with radius $1$, finitely many chords are drawn. You know that every diameter of the circle intersects at most $k$ of these chords. Prove that the sum of the lengths of all these chords is less than $k \cdot \pi$.

2021 AMC 10 Spring, 9

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^{\circ}$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a$? $\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$

1974 IMO Longlists, 4

Let $K_a,K_b,K_c$ with centres $O_a,O_b,O_c$ be the excircles of a triangle $ABC$, touching the interiors of the sides $BC,CA,AB$ at points $T_a,T_b,T_c$ respectively. Prove that the lines $O_aT_a,O_bT_b,O_cT_c$ are concurrent in a point $P$ for which $PO_a=PO_b=PO_c=2R$ holds, where $R$ denotes the circumradius of $ABC$. Also prove that the circumcentre $O$ of $ABC$ is the midpoint of the segment $PI$, where $I$ is the incentre of $ABC$.

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

1995 Poland - First Round, 8

The ray of light starts from the center of a square and reflects from its sides with the principle that the angle of reflection is equal to the angle of incidence. After some time the ray returns to the center of the square. The ray never reached the vertex and has never returned to the center of the square before. Prove that the ray reflected from the sides of the square an odd number of times.

2022 Bosnia and Herzegovina IMO TST, 1

Let $ABC$ be a triangle such that $AB=AC$ and $\angle BAC$ is obtuse. Point $O$ is the circumcenter of triangle $ABC$, and $M$ is the reflection of $A$ in $BC$. Let $D$ be an arbitrary point on line $BC$, such that $B$ is in between $D$ and $C$. Line $DM$ cuts the circumcircle of $ABC$ in $E,F$. Circumcircles of triangles $ADE$ and $ADF$ cut $BC$ in $P,Q$ respectively. Prove that $DA$ is tangent to the circumcircle of triangle $OPQ$.

2022 Novosibirsk Oral Olympiad in Geometry, 2

A ball was launched on a rectangular billiard table at an angle of $45^o$ to one of the sides. Reflected from all sides (the angle of incidence is equal to the angle of reflection), he returned to his original position . It is known that one of the sides of the table has a length of one meter. Find the length of the second side. [img]https://cdn.artofproblemsolving.com/attachments/3/d/e0310ea910c7e3272396cd034421d1f3e88228.png[/img]

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2010 Tournament Of Towns, 6

Quadrilateral $ABCD$ is circumscribed around the circle with centre $I$. Let points $M$ and $N$ be the midpoints of sides $AB$ and $CD$ respectively and let $\frac{IM}{AB} = \frac{IN}{CD}$. Prove that $ABCD$ is either a trapezoid or a parallelogram.

2007 Ukraine Team Selection Test, 5

$ AA_{3}$ and $ BB_{3}$ are altitudes of acute-angled $ \triangle ABC$. Points $ A_{1}$ and $ B_{1}$ are second points of intersection lines $ AA_{3}$ and $ BB_{3}$ with circumcircle of $ \triangle ABC$ respectively. $ A_{2}$ and $ B_{2}$ are points on $ BC$ and $ AC$ respectively. $ A_{1}A_{2}\parallel AC$, $ B_{1}B_{2}\parallel BC$. Point $ M$ is midpoint of $ A_{2}B_{2}$. $ \angle BCA \equal{} x$. Find $ \angle A_{3}MB_{3}$.

2010 India National Olympiad, 5

Let $ ABC$ be an acute-angled triangle with altitude $ AK$. Let $ H$ be its ortho-centre and $ O$ be its circum-centre. Suppose $ KOH$ is an acute-angled triangle and $ P$ its circum-centre. Let $ Q$ be the reflection of $ P$ in the line $ HO$. Show that $ Q$ lies on the line joining the mid-points of $ AB$ and $ AC$.

2008 Balkan MO Shortlist, G2

Given a scalene acute triangle $ ABC$ with $ AC>BC$ let $ F$ be the foot of the altitude from $ C$. Let $ P$ be a point on $ AB$, different from $ A$ so that $ AF\equal{}PF$. Let $ H,O,M$ be the orthocenter, circumcenter and midpoint of $ [AC]$. Let $ X$ be the intersection point of $ BC$ and $ HP$. Let $ Y$ be the intersection point of $ OM$ and $ FX$ and let $ OF$ intersect $ AC$ at $ Z$. Prove that $ F,M,Y,Z$ are concyclic.

2019 Tuymaada Olympiad, 8

In $\triangle ABC$ $\angle B$ is obtuse and $AB \ne BC$. Let $O$ is the circumcenter and $\omega$ is the circumcircle of this triangle. $N$ is the midpoint of arc $ABC$. The circumcircle of $\triangle BON$ intersects $AC$ on points $X$ and $Y$. Let $BX \cap \omega = P \ne B$ and $BY \cap \omega = Q \ne B$. Prove that $P, Q$ and reflection of $N$ with respect to line $AC$ are collinear.

1999 Romania Team Selection Test, 6

Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.

2008 District Olympiad, 4

Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.

2015 Turkey Junior National Olympiad, 4

Let $ABC$ be a triangle and $D$ be the midpoint of the segment $BC$. The circle that passes through $D$ and tangent to $AB$ at $B$, and the circle that passes through $D$ and tangent to $AC$ at $C$ intersect at $M\neq D$. Let $M'$ be the reflection of $M$ with respect to $BC$. Prove that $M'$ is on $AD$.

2006 AIME Problems, 8

There is an unlimited supply of congruent equilateral triangles made of colored paper. Each triangle is a solid color with the same color on both sides of the paper. A large equilateral triangle is constructed from four of these paper triangles. Two large triangles are considered distinguishable if it is not possible to place one on the other, using translations, rotations, and/or reflections, so that their corresponding small triangles are of the same color. Given that there are six different colors of triangles from which to choose, how many distinguishable large equilateral triangles may be formed?

2021 Iranian Geometry Olympiad, 4

In isosceles trapezoid $ABCD$ ($AB \parallel CD$) points $E$ and $F$ lie on the segment $CD$ in such a way that $D, E, F$ and $C$ are in that order and $DE = CF$. Let $X$ and $Y$ be the reflection of $E$ and $C$ with respect to $AD$ and $AF$. Prove that circumcircles of triangles $ADF$ and $BXY$ are concentric. [i]Proposed by Iman Maghsoudi - Iran[/i]

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2006 Moldova National Olympiad, 10.6

Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.

2009 Sharygin Geometry Olympiad, 12

Let $ CL$ be a bisector of triangle $ ABC$. Points $ A_1$ and $ B_1$ are the reflections of $ A$ and $ B$ in $ CL$, points $ A_2$ and $ B_2$ are the reflections of $ A$ and $ B$ in $ L$. Let $ O_1$ and $ O_2$ be the circumcenters of triangles $ AB_1B_2$ and $ BA_1A_2$ respectively. Prove that angles $ O_1CA$ and $ O_2CB$ are equal.

2011 APMO, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

2009 Germany Team Selection Test, 3

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]