Found problems: 1001
2007 Romania Team Selection Test, 1
Let $ ABCD$ be a parallelogram with no angle equal to $ 60^{\textrm{o}}$. Find all pairs of points $ E, F$, in the plane of $ ABCD$, such that triangles $ AEB$ and $ BFC$ are isosceles, of basis $ AB$, respectively $ BC$, and triangle $ DEF$ is equilateral.
[i]Valentin Vornicu[/i]
2019 Iran Team Selection Test, 4
Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$.
[i]Proposed by Mohammad Javad Shabani[/i]
2013 India IMO Training Camp, 2
In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.
2005 Bulgaria Team Selection Test, 5
Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$
2011 HMNT, 9
Let $ABC$ be a triangle with $AB = 9$, $BC = 10$, and $CA = 17$. Let $B'$ be the reflection of the point $B$ over the line $CA$. Let $G$ be the centroid of triangle $ABC$, and let $G'$ be the centroid of triangle $AB'C$. Determine the length of segment $GG'$.
2006 Germany Team Selection Test, 1
Let $A$, $B$, $C$, $D$, $E$, $F$ be six points on a circle such that $AE\parallel BD$ and $BC\parallel DF$. Let $X$ be the reflection of the point $D$ in the line $CE$. Prove that the distance from the point $X$ to the line $EF$ equals to the distance from the point $B$ to the line $AC$.
2012 Romania National Olympiad, 2
[color=darkred]Find all functions $f:\mathbb{R}\to\mathbb{R}$ with the following property: for any open bounded interval $I$, the set $f(I)$ is an open interval having the same length with $I$ .[/color]
2013 Harvard-MIT Mathematics Tournament, 35
Let $P$ be the number of ways to partition $2013$ into an ordered tuple of prime numbers. What is $\log_2 (P)$? If your answer is $A$ and the correct answer is $C$, then your score on this problem will be $\left\lfloor\frac{125}2\left(\min\left(\frac CA,\frac AC\right)-\frac35\right)\right\rfloor$ or zero, whichever is larger.
2013 Hong kong National Olympiad, 4
In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ [i]admires[/i] $B$ [i]in that set [/i]if
i) $A$ does not beat $B$; or
ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$.
A set of four players is said to be [i]harmonic[/i] if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.
2007 Mongolian Mathematical Olympiad, Problem 3
Let $P$ be a point outside of the triangle $ABC$ in the plane of $ABC$. Prove that by using reflections $S_{AB}$, $S_{AC}$, and $S_{BC}$ across the lines $AB$, $AC$, and $BC$ one can shift point $P$ inside the triangle $ABC$.
1996 USAMO, 3
Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.
2014 ELMO Shortlist, 11
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.
[i]Proposed by Yang Liu[/i]
2002 All-Russian Olympiad, 2
A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.
2010 Sharygin Geometry Olympiad, 22
A circle centered at a point $F$ and a parabola with focus $F$ have two common points. Prove that there exist four points $A, B, C, D$ on the circle such that the lines $AB, BC, CD$ and $DA$ touch the parabola.
2023 Macedonian Team Selection Test, Problem 2
Let $ABC$ be an acute triangle such that $AB<AC$ and $AB<BC$. Let $P$ be a point on the segment $BC$ such that $\angle APB = \angle BAC$. The tangent to the circumcircle of triangle $ABC$ at $A$ meets the circumcircle of triangle $APB$ at $Q \neq A$. Let $Q'$ be the reflection of $Q$ with respect to the midpoint of $AB$. The line $PQ$ meets the segment $AQ'$ at $S$. Prove that
$$\frac{1}{AB}+\frac{1}{AC} > \frac{1}{CS}.$$
[i]Authored by Nikola Velov[/i]
1999 National Olympiad First Round, 21
$ ABC$ is a triangle with $ \angle BAC \equal{} 10{}^\circ$, $ \angle ABC \equal{} 150{}^\circ$. Let $ X$ be a point on $ \left[AC\right]$ such that $ \left|AX\right| \equal{} \left|BC\right|$. Find $ \angle BXC$.
$\textbf{(A)}\ 15^\circ \qquad\textbf{(B)}\ 20^\circ \qquad\textbf{(C)}\ 25^\circ \qquad\textbf{(D)}\ 30^\circ \qquad\textbf{(E)}\ 35^\circ$
2008 China National Olympiad, 1
Suppose $\triangle ABC$ is scalene. $O$ is the circumcenter and $A'$ is a point on the extension of segment $AO$ such that $\angle BA'A = \angle CA'A$. Let point $A_1$ and $A_2$ be foot of perpendicular from $A'$ onto $AB$ and $AC$. $H_{A}$ is the foot of perpendicular from $A$ onto $BC$. Denote $R_{A}$ to be the radius of circumcircle of $\triangle H_{A}A_1A_2$. Similiarly we can define $R_{B}$ and $R_{C}$. Show that:
\[\frac{1}{R_{A}} + \frac{1}{R_{B}} + \frac{1}{R_{C}} = \frac{2}{R}\]
where R is the radius of circumcircle of $\triangle ABC$.
2016 Korea - Final Round, 1
In a acute triangle $\triangle ABC$, denote $D, E$ as the foot of the perpendicular from $B$ to $AC$ and $C$ to $AB$.
Denote the reflection of $E$ with respect to $AC, BC$ as $S, T$.
The circumcircle of $\triangle CST$ hits $AC$ at point $X (\not= C)$.
Denote the circumcenter of $\triangle CST$ as $O$. Prove that $XO \perp DE$.
2010 Postal Coaching, 2
Suppose $\triangle ABC$ has circumcircle $\Gamma$, circumcentre $O$ and orthocentre $H$. Parallel lines $\alpha, \beta, \gamma$ are drawn through the vertices $A, B, C$, respectively. Let $\alpha ', \beta ', \gamma '$ be the reflections of $\alpha, \beta, \gamma$ in the sides $BC, CA, AB$, respectively.
$(a)$ Show that $\alpha ', \beta ', \gamma '$ are concurrent if and only if $\alpha, \beta, \gamma$ are parallel to the Euler line $OH$.
$(b)$ Suppose that $\alpha ', \beta ' , \gamma '$ are concurrent at the point $P$ . Show that $\Gamma$ bisects $OP$ .
1989 Iran MO (2nd round), 3
A line $d$ is called [i]faithful[/i] to triangle $ABC$ if $d$ be in plane of triangle $ABC$ and the reflections of $d$ over the sides of $ABC$ be concurrent. Prove that for any two triangles with acute angles lying in the same plane, either there exists exactly one [i]faithful[/i] line to both of them, or there exist infinitely [i]faithful[/i] lines to them.
2014 Contests, 3
We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point).
(a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$.
(b) Find the largest possible size of a very set not contained in any line.
(Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.)
[i]Proposed by Sammy Luo[/i]
2014 AMC 12/AHSME, 18
The numbers 1, 2, 3, 4, 5 are to be arranged in a circle. An arrangement is [i]bad[/i] if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there?
$ \textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5 $
2021 Taiwan Mathematics Olympiad, 4.
Let $I$ be the incenter of triangle $ABC$ and let $D$ the foot of altitude from $I$ to $BC$. Suppose the reflection point $D’$ of $D$ with respect to $I$ satisfying $\overline{AD’} = \overline{ID’}$. Let $\Gamma$ be the circle centered at $D’$ that passing through $A$ and $I$, and let $X$, $Y\neq A$ be the intersection of $\Gamma$ and $AB$, $AC$, respectively. Suppose $Z$ is a point on $\Gamma$ so that $AZ$ is perpendicular to $BC$.
Prove that $AD$, $D’Z$, $XY$ concurrent at a point.
1983 Tournament Of Towns, (036) O5
A version of billiards is played on a right triangular table, with a pocket in each of the three corners, and one of the acute angles being $30^o$. A ball is played from just in front of the pocket at the $30^o$. vertex toward the midpoint of the opposite side. Prove that if the ball is played hard enough, it will land in the pocket of the $60^o$ vertex after $8$ reflections.
2011 Indonesia TST, 3
Let $ABC$ and $PQR$ be two triangles such that
[list]
[b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
[b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
[/list]
Prove that $AB+AC=PQ+PR$.