This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2005 Italy TST, 2

The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.

2002 Turkey Team Selection Test, 2

Two circles are internally tangent at a point $A$. Let $C$ be a point on the smaller circle other than $A$. The tangent line to the smaller circle at $C$ meets the bigger circle at $D$ and $E$; and the line $AC$ meets the bigger circle at $A$ and $P$. Show that the line $PE$ is tangent to the circle through $A$, $C$, and $E$.

1976 Miklós Schweitzer, 11

Let $ \xi_1,\xi_2,...$ be independent, identically distributed random variables with distribution \[ P(\xi_1=-1)=P(\xi_1=1)=\frac 12 .\] Write $ S_n=\xi_1+\xi_2+...+\xi_n \;(n=1,2,...),\ \;S_0=0\ ,$ and \[ T_n= \frac{1}{\sqrt{n}} \max _{ 0 \leq k \leq n}S_k .\] Prove that $ \liminf_{n \rightarrow \infty} (\log n)T_n=0$ with probability one. [i]P. Revesz[/i]

2014 Middle European Mathematical Olympiad, 6

Let the incircle $k$ of the triangle $ABC$ touch its side $BC$ at $D$. Let the line $AD$ intersect $k$ at $L \neq D$ and denote the excentre of $ABC$ opposite to $A$ by $K$. Let $M$ and $N$ be the midpoints of $BC$ and $KM$ respectively. Prove that the points $B, C, N,$ and $L$ are concyclic.

2009 China Team Selection Test, 1

Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$

2018 Canadian Mathematical Olympiad Qualification, 2

We call a pair of polygons, $p$ and $q$, [i]nesting[/i] if we can draw one inside the other, possibly after rotation and/or reflection; otherwise we call them [i]non-nesting[/i]. Let $p$ and $q$ be polygons. Prove that if we can find a polygon $r$, which is similar to $q$, such that $r$ and $p$ are non-nesting if and only if $p$ and $q$ are not similar.

2018 Taiwan TST Round 1, 2

Given a scalene triangle $ \triangle ABC $. $ B', C' $ are points lie on the rays $ \overrightarrow{AB}, \overrightarrow{AC} $ such that $ \overline{AB'} = \overline{AC}, \overline{AC'} = \overline{AB} $. Now, for an arbitrary point $ P $ in the plane. Let $ Q $ be the reflection point of $ P $ w.r.t $ \overline{BC} $. The intersections of $ \odot{\left(BB'P\right)} $ and $ \odot{\left(CC'P\right)} $ is $ P' $ and the intersections of $ \odot{\left(BB'Q\right)} $ and $ \odot{\left(CC'Q\right)} $ is $ Q' $. Suppose that $ O, O' $ are circumcenters of $ \triangle{ABC}, \triangle{AB'C'} $ Show that 1. $ O', P', Q' $ are colinear 2. $ \overline{O'P'} \cdot \overline{O'Q'} = \overline{OA}^{2} $

2021 Sharygin Geometry Olympiad, 8.2

Three parallel lines $\ell_a, \ell_b, \ell_c$ pass through the vertices of triangle $ABC$. A line $a$ is the reflection of altitude $AH_a$ about $\ell_a$. Lines $b, c$ are defined similarly. Prove that $a, b, c$ are concurrent.

2010 Contests, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]

2018 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be a triangle, and let $E$ and $F$ be two arbitrary points on the sides $AB$ and $AC$, respectively. The circumcircle of triangle $AEF$ meets the circumcircle of triangle $ABC$ again at point $M$. Let $D$ be the reflection of point $M$ across the line $EF$ and let $O$ be the circumcenter of triangle $ABC$. Prove that $D$ is on $BC$ if and only if $O$ belongs to the circumcircle of triangle $AEF$.

2008 China Team Selection Test, 1

Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.

1938 Moscow Mathematical Olympiad, 039

The following operation is performed over points $O_1, O_2, O_3$ and $A$ in space. The point $A$ is reflected with respect to $O_1$, the resultant point $A_1$ is reflected through $O_2$, and the resultant point $A_2$ through $O_3$. We get some point $A_3$ that we will also consecutively reflect through $O_1, O_2, O_3$. Prove that the point obtained last coincides with $A$..

1978 Polish MO Finals, 1

A ray of light reflects from the rays of a given angle. A ray that enters the vertex of the angle is absorbed. Prove that there is a natural number $n$ such that any ray can reflect at most $n$ times

2010 Tuymaada Olympiad, 3

Let $ABC$ be a triangle, $I$ its incenter, $\omega$ its incircle, $P$ a point such that $PI\perp BC$ and $PA\parallel BC$, $Q\in (AB), R\in (AC)$ such that $QR\parallel BC$ and $QR$ tangent to $\omega$. Show that $\angle QPB = \angle CPR$.

2005 Greece Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2005 Danube Mathematical Olympiad, 3

Let $\mathcal{C}$ be a circle with center $O$, and let $A$ be a point outside the circle. Let the two tangents from the point $A$ to the circle $\mathcal{C}$ meet this circle at the points $S$ and $T$, respectively. Given a point $M$ on the circle $\mathcal{C}$ which is different from the points $S$ and $T$, let the line $MA$ meet the perpendicular from the point $S$ to the line $MO$ at $P$. Prove that the reflection of the point $S$ in the point $P$ lies on the line $MT$.

2013 Romanian Masters In Mathematics, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.

2011 Germany Team Selection Test, 2

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2014 ITAMO, 4

Let $\omega$ be a circle with center $A$ and radius $R$. On the circumference of $\omega$ four distinct points $B, C, G, H$ are taken in that order in such a way that $G$ lies on the extended $B$-median of the triangle $ABC$, and H lies on the extension of altitude of $ABC$ from $B$. Let $X$ be the intersection of the straight lines $AC$ and $GH$. Show that the segment $AX$ has length $2R$.

2011 China Team Selection Test, 1

Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.

2010 Iran MO (3rd Round), 5

In a triangle $ABC$, $I$ is the incenter. $D$ is the reflection of $A$ to $I$. the incircle is tangent to $BC$ at point $E$. $DE$ cuts $IG$ at $P$ ($G$ is centroid). $M$ is the midpoint of $BC$. prove that a) $AP||DM$.(15 points) b) $AP=2DM$. (10 points)

2013 ELMO Shortlist, 8

Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$. [i]Proposed by David Stoner[/i]

2009 South africa National Olympiad, 2

Let $ABCD$ be a rectangle and $E$ the reflection of $A$ with respect to the diagonal $BD$. If $EB = EC$, what is the ratio $\frac{AD}{AB}$ ?

2009 Belarus Team Selection Test, 2

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]

2012 Albania National Olympiad, 5

Let $ABC$ be a triangle where $AC\neq BC$. Let $P$ be the foot of the altitude taken from $C$ to $AB$; and let $V$ be the orthocentre, $O$ the circumcentre of $ABC$, and $D$ the point of intersection between the radius $OC$ and the side $AB$. The midpoint of $CD$ is $E$. a) Prove that the reflection $V'$ of $V$ in $AB$ is on the circumcircle of the triangle $ABC$. b) In what ratio does the segment $EP$ divide the segment $OV$?