This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2014 NIMO Problems, 8

Aaron takes a square sheet of paper, with one corner labeled $A$. Point $P$ is chosen at random inside of the square and Aaron folds the paper so that points $A$ and $P$ coincide. He cuts the sheet along the crease and discards the piece containing $A$. Let $p$ be the probability that the remaining piece is a pentagon. Find the integer nearest to $100p$. [i]Proposed by Aaron Lin[/i]

2006 China Team Selection Test, 2

Let $\omega$ be the circumcircle of $\triangle{ABC}$. $P$ is an interior point of $\triangle{ABC}$. $A_{1}, B_{1}, C_{1}$ are the intersections of $AP, BP, CP$ respectively and $A_{2}, B_{2}, C_{2}$ are the symmetrical points of $A_{1}, B_{1}, C_{1}$ with respect to the midpoints of side $BC, CA, AB$. Show that the circumcircle of $\triangle{A_{2}B_{2}C_{2}}$ passes through the orthocentre of $\triangle{ABC}$.

2014 ELMO Shortlist, 3

We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point). (a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$. (b) Find the largest possible size of a very set not contained in any line. (Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.) [i]Proposed by Sammy Luo[/i]

1999 All-Russian Olympiad, 3

The incircle of $\triangle ABC$ touch $AB$,$BC$,$CA$ at $K$,$L$,$M$. The common external tangents to the incircles of $\triangle AMK$,$\triangle BKL$,$\triangle CLM$, distinct from the sides of $\triangle ABC$, are drawn. Show that these three lines are concurrent.

1999 USAMO, 6

Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.

2014 ITAMO, 4

Let $\omega$ be a circle with center $A$ and radius $R$. On the circumference of $\omega$ four distinct points $B, C, G, H$ are taken in that order in such a way that $G$ lies on the extended $B$-median of the triangle $ABC$, and H lies on the extension of altitude of $ABC$ from $B$. Let $X$ be the intersection of the straight lines $AC$ and $GH$. Show that the segment $AX$ has length $2R$.

2014 Kurschak Competition, 3

Let $K$ be a closed convex polygonal region, and let $X$ be a point in the plane of $K$. Show that there exists a finite sequence of reflections in the sides of $K$, such that $K$ contains the image of $X$ after these reflections.

2012 Cono Sur Olympiad, 6

6. Consider a triangle $ABC$ with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let $M$ and $N$, respectively, be variable points of the sides $AB$ and $AC$, different from $A$, such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle $AMN$ pass through a fixed point different from $A$.

1999 IMO Shortlist, 7

The point $M$ is inside the convex quadrilateral $ABCD$, such that \[ MA = MC, \hspace{0,2cm} \widehat{AMB} = \widehat{MAD} + \widehat{MCD} \quad \textnormal{and} \quad \widehat{CMD} = \widehat{MCB} + \widehat{MAB}. \] Prove that $AB \cdot CM = BC \cdot MD$ and $BM \cdot AD = MA \cdot CD.$

2005 Germany Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2013 Iran MO (3rd Round), 5

Let $ABC$ be triangle with circumcircle $(O)$. Let $AO$ cut $(O)$ again at $A'$. Perpendicular bisector of $OA'$ cut $BC$ at $P_A$. $P_B,P_C$ define similarly. Prove that : I) Point $P_A,P_B,P_C$ are collinear. II ) Prove that the distance of $O$ from this line is equal to $\frac {R}{2}$ where $R$ is the radius of the circumcircle.

2022 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$. [asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("$\textcolor{blue}{H}$",H,NW); label("$\textcolor{blue}{P}$",P,N); label("$A$",A,W); label("$B$",B,N); label("$C$",C,S); label("$O$",O,S); label("$\textcolor{blue}{Q}$",Q,E); label("$\textcolor{blue}{R}$",R,W); label("$\textcolor{red}{Y}$",Y,S); label("$\textcolor{red}{Z}$",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]

1987 IMO Longlists, 57

The bisectors of the angles $B,C$ of a triangle $ABC$ intersect the opposite sides in $B', C'$ respectively. Prove that the straight line $B'C'$ intersects the inscribed circle in two different points.

2015 USA Team Selection Test, 1

Let $ABC$ be a non-isosceles triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Denote by $M$ the midpoint of $\overline{BC}$. Let $Q$ be a point on the incircle such that $\angle AQD = 90^{\circ}$. Let $P$ be the point inside the triangle on line $AI$ for which $MD = MP$. Prove that either $\angle PQE = 90^{\circ}$ or $\angle PQF = 90^{\circ}$. [i]Proposed by Evan Chen[/i]

2017 Azerbaijan Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2016 ASMT, 6

Let $ABC$ be a triangle with $AB = 5$ and $AC = 4$. Let $D$ be the reflection of $C$ across $AB$, and let $E$ be the reflection of $B$ across $AC$. $D$ and $E$ have the special property that $D, A, E$ are collinear. Finally, suppose that lines $DB$ and $EC$ intersect at a point $F$. Compute the area of $\vartriangle BCF$.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

2010 China Girls Math Olympiad, 6

In acute triangle $ABC$, $AB > AC$. Let $M$ be the midpoint of side $BC$. The exterior angle bisector of $\widehat{BAC}$ meet ray $BC$ at $P$. Point $K$ and $F$ lie on line $PA$ such that $MF \perp BC$ and $MK \perp PA$. Prove that $BC^2 = 4 PF \cdot AK$. [asy] defaultpen(fontsize(10)); size(7cm); pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P); draw(K--M--F--P--B--A--C); pair point = I; pair[] p={A,B,C,M,P,F,K}; string s = "A,B,C,M,P,F,K"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy]

2011 Costa Rica - Final Round, 1

Let $ABC$ be a triangle with orthocenter $H$. Let $P,Q,R$ be the reflections of $H$ with respect to sides $BC,AC,AB$, respectively. Show that $H$ is incenter of $PQR$.

2015 Baltic Way, 14

In the non-isosceles triangle $ABC$ an altitude from $A$ meets side $BC$ in $D$ . Let $M$ be the midpoint of $BC$ and let $N$ be the reflection of $M$ in $D$ . The circumcirle of triangle $AMN$ intersects the side $AB$ in $P\ne A$ and the side $AC$ in $Q\ne A$ . Prove that $AN,BQ$ and $CP$ are concurrent.

2013 Moldova Team Selection Test, 3

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle with $AB>AC$, let $I$ be the center of the incircle. Let $M,N$ be the midpoint of $AC$ and $AB$ respectively. $D,E$ are on $AC$ and $AB$ respectively such that $BD\parallel IM$ and $CE\parallel IN$. A line through $I$ parallel to $DE$ intersects $BC$ in $P$. Let $Q$ be the projection of $P$ on line $AI$. Prove that $Q$ is on the circumcircle of $\triangle ABC$.

2013 Iran MO (2nd Round), 1

Let $P$ be a point out of circle $C$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $K$ on $AB$ . Suppose that the circumcircle of triangle $PBK$ intersects $C$ again at $T$. Let ${P}'$ be the reflection of $P$ with respect to $A$. Prove that \[ \angle PBT = \angle {P}'KA \]

2006 IMO Shortlist, 9

Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.