Found problems: 1001
2009 Princeton University Math Competition, 5
A polygon is called concave if it has at least one angle strictly greater than $180^{\circ}$. What is the maximum number of symmetries that an 11-sided concave polygon can have? (A [i]symmetry[/i] of a polygon is a way to rotate or reflect the plane that leaves the polygon unchanged.)
2014 Contests, 2
Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.
2003 AMC 12-AHSME, 19
A parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ is reflected about the $ x$-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become the graphs of $ y \equal{} f(x)$ and $ y \equal{} g(x)$, respectively. Which of the following describes the graph of $ y \equal{} (f \plus{} g)(x)$?
$ \textbf{(A)}\ \text{a parabola tangent to the }x\text{ \minus{} axis}$
$ \textbf{(B)}\ \text{a parabola not tangent to the }x\text{ \minus{} axis} \qquad \textbf{(C)}\ \text{a horizontal line}$
$ \textbf{(D)}\ \text{a non \minus{} horizontal line} \qquad \textbf{(E)}\ \text{the graph of a cubic function}$
2009 Germany Team Selection Test, 3
In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$.
[i]Proposed by Davood Vakili, Iran[/i]
2015 India IMO Training Camp, 1
Let $ABC$ be a triangle in which $CA>BC>AB$. Let $H$ be its orthocentre and $O$ its circumcentre. Let $D$ and $E$ be respectively the midpoints of the arc $AB$ not containing $C$ and arc $AC$ not containing $B$. Let $D'$ and $E'$ be respectively the reflections of $D$ in $AB$ and $E$ in $AC$. Prove that $O, H, D', E'$ lie on a circle if and only if $A, D', E'$ are collinear.
2017 Mathematical Talent Reward Programme, SAQ: P 6
Let us consider an infinite grid plane as shown below. We start with 4 points $A$, $B$, $C$, $D$, that form a square.
We perform the following operation: We pick two points $X$ and $Y$ from the currant points. $X$ is reflected about $Y$ to get $X'$. We remove $X$ and add $X'$ to get a new set of 4 points and treat it as our currant points.
For example in the figure suppose we choose $A$ and $B$ (we can choose any other pair too). Then reflect $A$ about $B$ to get $A'$. We remove $A$ and add $A'$. Thus $A'$, $B$, $C$, $D$ is our new 4 points. We may again choose $D$ and $A'$ from the currant points. Reflect $D$ about $A'$ to obtain $D'$ and hence $A'$, $B$, $C$, $D'$ are now new set of points. Then similar operation is performed on this new 4 points and so on.
Starting with $A$, $B$, $C$, $D$ can you get a bigger square by some sequence of such operations?
2012 AMC 12/AHSME, 25
Let $S=\{(x,y) : x \in \{0,1,2,3,4\}, y \in \{0,1,2,3,4,5\}$, and $(x,y) \neq (0,0) \}$. Let $T$ be the set of all right triangles whose vertices are in $S$. For every right triangle $t=\triangle ABC$ with vertices $A$, $B$, and $C$ in counter-clockwise order and right angle at $A$, let $f(t)= \tan (\angle CBA)$. What is
\[ \displaystyle \prod_{t \in T} f(t) \text{?} \]
[asy]
size((120));
dot((1,0));
dot((2,0));
dot((3,0));
dot((4,0));
dot((0,1));
dot((0,2));
dot((0,3));
dot((0,4));
dot((0,5));
dot((1,1));
dot((1,2));
dot((1,3));
dot((1,4));
dot((1,5));
dot((2,1));
dot((2,2));
dot((2,3));
dot((2,4));
dot((2,5));
dot((3,1));
dot((3,2));
dot((3,3));
dot((3,4));
dot((3,5));
dot((4,1));
dot((4,2));
dot((4,3));
dot((4,4));
dot((4,5));
label("$\circ$", (0,0));
label("$S$", (-.7,2.5));
[/asy]
$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{625}{144} \qquad \textbf{(C)}\ \frac{125}{24} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ \frac{625}{24}$
2013 Princeton University Math Competition, 6
A sequence of vertices $v_1,v_2,\ldots,v_k$ in a graph, where $v_i=v_j$ only if $i=j$ and $k$ can be any positive integer, is called a $\textit{cycle}$ if $v_1$ is attached by an edge to $v_2$, $v_2$ to $v_3$, and so on to $v_k$ connected to $v_1$. Rotations and reflections are distinct: $A,B,C$ is distinct from $A,C,B$ and $B,C,A$. Supposed a simple graph $G$ has $2013$ vertices and $3013$ edges. What is the minimal number of cycles possible in $G$?
2002 Turkey Team Selection Test, 2
Two circles are internally tangent at a point $A$. Let $C$ be a point on the smaller circle other than $A$. The tangent line to the smaller circle at $C$ meets the bigger circle at $D$ and $E$; and the line $AC$ meets the bigger circle at $A$ and $P$. Show that the line $PE$ is tangent to the circle through $A$, $C$, and $E$.
2007 QEDMO 4th, 12
Let $ABC$ be a triangle, and let $D$, $E$, $F$ be the points of contact of its incircle $\omega$ with its sides $BC$, $CA$, $AB$, respectively. Let $K$ be the point of intersection of the line $AD$ with the incircle $\omega$ different from $D$, and let $M$ be the point of intersection of the line $EF$ with the line perpendicular to $AD$ passing through $K$. Prove that $AM$ is parallel to $BC$.
2012 ELMO Shortlist, 6
In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear.
[i]Ray Li.[/i]
2013 Tuymaada Olympiad, 2
Points $X$ and $Y$ inside the rhombus $ABCD$ are such that $Y$ is inside the convex quadrilateral $BXDC$ and $2\angle XBY = 2\angle XDY = \angle ABC$. Prove that the lines $AX$ and $CY$ are parallel.
[i]S. Berlov[/i]
2014 India National Olympiad, 5
In a acute-angled triangle $ABC$, a point $D$ lies on the segment $BC$. Let $O_1,O_2$ denote the circumcentres of triangles $ABD$ and $ACD$ respectively. Prove that the line joining the circumcentre of triangle $ABC$ and the orthocentre of triangle $O_1O_2D$ is parallel to $BC$.
2012 Romania Team Selection Test, 2
Let $ABCD$ be a cyclic quadrilateral such that the triangles $BCD$ and $CDA$ are not equilateral. Prove that if the Simson line of $A$ with respect to $\triangle BCD$ is perpendicular to the Euler line of $BCD$, then the Simson line of $B$ with respect to $\triangle ACD$ is perpendicular to the Euler line of $\triangle ACD$.
2019 Iran MO (3rd Round), 1
Consider a triangle $ABC$ with incenter $I$. Let $D$ be the intersection of $BI,AC$ and $CI$ intersects the circumcircle of $ABC$ at $M$. Point $K$ lies on the line $MD$ and $\angle KIA=90^\circ$. Let $F$ be the reflection of $B$ about $C$. Prove that $BIKF$ is cyclic.
2007 Irish Math Olympiad, 3
The point $ P$ is a fixed point on a circle and $ Q$ is a fixed point on a line. The point $ R$ is a variable point on the circle such that $ P,Q,$ and $ R$ are not collinear. The circle through $ P,Q,$ and $ R$ meets the line again at $ V$. Show that the line $ VR$ passes through a fixed point.
1993 China Team Selection Test, 3
Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.
2005 Bulgaria Team Selection Test, 5
Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$
2007 QEDMO 4th, 5
Let $ ABC$ be a triangle, and let $ X$, $ Y$, $ Z$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Denote by $ X^{\prime}$, $ Y^{\prime}$, $ Z^{\prime}$ the reflections of these points $ X$, $ Y$, $ Z$ in the midpoints of the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \left\vert XYZ\right\vert \equal{}\left\vert X^{\prime}Y^{\prime}Z^{\prime}\right\vert$.
2006 Moldova National Olympiad, 10.6
Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.
2016 USA Team Selection Test, 2
Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$.
[i]Proposed by Evan Chen[/i]
2012 Sharygin Geometry Olympiad, 15
Given triangle $ABC$. Consider lines $l$ with the next property: the reflections of $l$ in the sidelines of the triangle concur. Prove that all these lines have a common point.
2014 USAMTS Problems, 4:
Let $\omega_P$ and $\omega_Q$ be two circles of radius $1$, intersecting in points $A$ and $B$. Let $P$ and $Q$ be two regular $n$-gons (for some positive integer $n\ge4$) inscribed in $\omega_P$ and $\omega_Q$, respectively, such that $A$ and $B$ are vertices of both $P$ and $Q$. Suppose a third circle $\omega$ of radius $1$ intersects $P$ at two of its vertices $C$, $D$ and intersects $Q$ at two of its vertices $E$, $F$. Further assume that $A$, $B$, $C$, $D$, $E$, $F$ are all distinct points, that $A$ lies outside of $\omega$, and that $B$ lies inside $\omega$. Show that there exists a regular $2n$-gon that contains $C$, $D$, $E$, $F$ as four of its vertices.
2024 Polish Junior MO Finals, 4
Let $ABC$ be an isosceles triangle with $AC=BC$. Let $P,Q,R$ be points on the sides $AB, BC, CA$ of the triangle such that $CQPR$ is a parallelogram. Show that the reflection of $P$ over $QR$ lies on the circumcircle of $ABC$.
1999 Romania Team Selection Test, 6
Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.