This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2001 Vietnam Team Selection Test, 2

In the plane let two circles be given which intersect at two points $A, B$; Let $PT$ be one of the two common tangent line of these circles ($P, T$ are points of tangency). Tangents at $P$ and $T$ of the circumcircle of triangle $APT$ meet each other at $S$. Let $H$ be a point symmetric to $B$ under $PT$. Show that $A, S, H$ are collinear.

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

2011 ELMO Shortlist, 4

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$. [i]Calvin Deng.[/i]

2014 EGMO, 2

Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.

1984 AIME Problems, 12

A function $f$ is defined for all real numbers and satisfies \[f(2 + x) = f(2 - x)\qquad\text{and}\qquad f(7 + x) = f(7 - x)\] for all real $x$. If $x = 0$ is a root of $f(x) = 0$, what is the least number of roots $f(x) = 0$ must have in the interval $-1000 \le x \le 1000$?

2003 Vietnam Team Selection Test, 2

Given a triangle $ABC$. Let $O$ be the circumcenter of this triangle $ABC$. Let $H$, $K$, $L$ be the feet of the altitudes of triangle $ABC$ from the vertices $A$, $B$, $C$, respectively. Denote by $A_{0}$, $B_{0}$, $C_{0}$ the midpoints of these altitudes $AH$, $BK$, $CL$, respectively. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$, respectively. Prove that the four lines $A_{0}D$, $B_{0}E$, $C_{0}F$ and $OI$ are concurrent. (When the point $O$ concides with $I$, we consider the line $OI$ as an arbitrary line passing through $O$.)

1998 Iran MO (3rd Round), 2

Let $ M$ and $ N$ be two points inside triangle $ ABC$ such that \[ \angle MAB \equal{} \angle NAC\quad \mbox{and}\quad \angle MBA \equal{} \angle NBC. \] Prove that \[ \frac {AM \cdot AN}{AB \cdot AC} \plus{} \frac {BM \cdot BN}{BA \cdot BC} \plus{} \frac {CM \cdot CN}{CA \cdot CB} \equal{} 1. \]

1994 ITAMO, 4

Let $ABC$ be a triangle contained in one of the halfplanes determined by a line $r$. Points $A',B',C'$ are the reflections of $A,B,C$ in $r,$ respectively. Consider the line through $A'$ parallel to $BC$, the line through $B'$ parallel to $AC$ and the line through $C'$ parallel to $AB$. Show that these three lines have a common point.

1999 Romania Team Selection Test, 12

Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.

2008 China Team Selection Test, 1

Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.

Taiwan TST 2015 Round 1, 1

Let $ABC$ be a triangle and $M$ be the midpoint of $BC$, and let $AM$ meet the circumcircle of $ABC$ again at $R$. A line passing through $R$ and parallel to $BC$ meet the circumcircle of $ABC$ again at $S$. Let $U$ be the foot from $R$ to $BC$, and $T$ be the reflection of $U$ in $R$. $D$ lies in $BC$ such that $AD$ is an altitude. $N$ is the midpoint of $AD$. Finally let $AS$ and $MN$ meets at $K$. Prove that $AT$ bisector $MK$.

2010 Stanford Mathematics Tournament, 1

Find the reflection of the point $(11, 16, 22)$ across the plane $3x+4y+5z=7$.

2010 Czech-Polish-Slovak Match, 3

Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.

2014 ELMO Shortlist, 11

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$. [i]Proposed by Yang Liu[/i]

2011 JBMO Shortlist, 8

Determine the polygons with $n$ sides $(n \ge 4)$, not necessarily convex, which satisfy the property that the reflection of every vertex of polygon with respect to every diagonal of the polygon does not fall outside the polygon. [b]Note:[/b] Each segment joining two non-neighboring vertices of the polygon is a diagonal. The reflection is considered with respect to the support line of the diagonal.

1951 Polish MO Finals, 1

A beam of length $ a $ is suspended horizontally with its ends on two parallel ropes equal $ b $. We turn the beam through an angle $ \varphi $ around a vertical axis passing through the center of the beam. By how much will the beam rise?

2003 Iran MO (3rd Round), 20

Suppose that $ M$ is an arbitrary point on side $ BC$ of triangle $ ABC$. $ B_1,C_1$ are points on $ AB,AC$ such that $ MB = MB_1$ and $ MC = MC_1$. Suppose that $ H,I$ are orthocenter of triangle $ ABC$ and incenter of triangle $ MB_1C_1$. Prove that $ A,B_1,H,I,C_1$ lie on a circle.

2013 National Olympiad First Round, 9

Let $ABC$ be a triangle with $|AB|=18$, $|AC|=24$, and $m(\widehat{BAC}) = 150^\circ$. Let $D$, $E$, $F$ be points on sides $[AB]$, $[AC]$, $[BC]$, respectively, such that $|BD|=6$, $|CE|=8$, and $|CF|=2|BF|$. Let $H_1$, $H_2$, $H_3$ be the reflections of the orthocenter of triangle $ABC$ over the points $D$, $E$, $F$, respectively. What is the area of triangle $H_1H_2H_3$? $ \textbf{(A)}\ 70 \qquad\textbf{(B)}\ 72 \qquad\textbf{(C)}\ 84 \qquad\textbf{(D)}\ 96 \qquad\textbf{(E)}\ 108 $

2014 NIMO Summer Contest, 14

Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$. Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

2013 Pan African, 3

Let $ABCDEF$ be a convex hexagon with $\angle A= \angle D$ and $\angle B=\angle E$ . Let $K$ and $L$ be the midpoints of the sides $AB$ and $DE$ respectively. Prove that the sum of the areas of triangles $FAK$, $KCB$ and $CFL$ is equal to half of the area of the hexagon if and only if \[\frac{BC}{CD}=\frac{EF}{FA}.\]

2013 Sharygin Geometry Olympiad, 18

Let $AD$ be a bisector of triangle $ABC$. Points $M$ and $N$ are projections of $B$ and $C$ respectively to $AD$. The circle with diameter $MN$ intersects $BC$ at points $X$ and $Y$. Prove that $\angle BAX = \angle CAY$.

2011 Canadian Students Math Olympiad, 4

Circles $\Gamma_1$ and $\Gamma_2$ have centers $O_1$ and $O_2$ and intersect at $P$ and $Q$. A line through $P$ intersects $\Gamma_1$ and $\Gamma_2$ at $A$ and $B$, respectively, such that $AB$ is not perpendicular to $PQ$. Let $X$ be the point on $PQ$ such that $XA=XB$ and let $Y$ be the point within $AO_1 O_2 B$ such that $AYO_1$ and $BYO_2$ are similar. Prove that $2\angle{O_1 AY}=\angle{AXB}$. [i]Author: Matthew Brennan[/i]

1970 IMO Longlists, 40

Let ABC be a triangle with angles $\alpha, \beta, \gamma$ commensurable with $\pi$. Starting from a point $P$ interior to the triangle, a ball reflects on the sides of $ABC$, respecting the law of reflection that the angle of incidence is equal to the angle of reflection. Prove that, supposing that the ball never reaches any of the vertices $A,B,C$, the set of all directions in which the ball will move through time is finite. In other words, its path from the moment $0$ to infinity consists of segments parallel to a finite set of lines.

2013 Canada National Olympiad, 5

Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.

MathLinks Contest 7th, 4.2

Find the number of finite sequences $ \{a_1,a_2,\ldots,a_{2n\plus{}1}\}$, formed with nonnegative integers, for which $ a_1\equal{}a_{2n\plus{}1}\equal{}0$ and $ |a_k \minus{}a_{k\plus{}1}|\equal{}1$, for all $ k\in\{1,2,\ldots,2n\}$.