This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2008 Hanoi Open Mathematics Competitions, 4

Prove that there exists an infinite number of relatively prime pairs $(m, n)$ of positive integers such that the equation \[x^3-nx+mn=0\] has three distint integer roots.

2019 Durer Math Competition Finals, 3

For each integer $n$ ($n \ge 2$), let $f(n)$ denote the sum of all positive integers that are at most $n$ and not relatively prime to $n$. Prove that $f(n+p) \neq f(n)$ for each such $n$ and every prime $p$.

2013 AIME Problems, 6

Melinda has three empty boxes and $12$ textbooks, three of which are mathematics textbooks. One box will hold any three of her textbooks, one will hold any four of her textbooks, and one will hold any five of her textbooks. If Melinda packs her textbooks into these boxes in random order, the probability that all three mathematics textbooks end up in the same box can be written as $\frac{m}{n}$, where $m$ and $n$ Are relatively prime positive integers. Find $m+n$.

2010 AIME Problems, 11

Let $ \mathcal{R}$ be the region consisting of the set of points in the coordinate plane that satisfy both $ |8 \minus{} x| \plus{} y \le 10$ and $ 3y \minus{} x \ge 15$. When $ \mathcal{R}$ is revolved around the line whose equation is $ 3y \minus{} x \equal{} 15$, the volume of the resulting solid is $ \frac {m\pi}{n\sqrt {p}}$, where $ m$, $ n$, and $ p$ are positive integers, $ m$ and $ n$ are relatively prime, and $ p$ is not divisible by the square of any prime. Find $ m \plus{} n \plus{} p$.

2012 Purple Comet Problems, 12

Ted flips seven fair coins. there are relatively prime positive integers $m$ and $n$ so that $\frac{m}{n}$ is the probability that Ted flips at least two heads given that he flips at least three tails. Find $m+n$.

2014 AIME Problems, 10

A disk with radius $1$ is externally tangent to a disk with radius $5$. Let $A$ be the point where the disks are tangent, $C$ be the center of the smaller disk, and $E$ be the center of the larger disk. While the larger disk remains fixed, the smaller disk is allowed to roll along the outside of the larger disk until the smaller disk has turned through an angle of $360^\circ$. That is, if the center of the smaller disk has moved to the point $D$, and the point on the smaller disk that began at $A$ has now moved to point $B$, then $\overline{AC}$ is parallel to $\overline{BD}$. Then $\sin^2(\angle BEA)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2006 Romania National Olympiad, 4

Let $A$ be a set of positive integers with at least 2 elements. It is given that for any numbers $a>b$, $a,b \in A$ we have $\frac{ [a,b] }{ a- b } \in A$, where by $[a,b]$ we have denoted the least common multiple of $a$ and $b$. Prove that the set $A$ has [i]exactly[/i] two elements. [i]Marius Gherghu, Slatina[/i]

2013 NIMO Problems, 6

Let $f(n)=\varphi(n^3)^{-1}$, where $\varphi(n)$ denotes the number of positive integers not greater than $n$ that are relatively prime to $n$. Suppose \[ \frac{f(1)+f(3)+f(5)+\dots}{f(2)+f(4)+f(6)+\dots} = \frac{m}{n} \] where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$. [i]Proposed by Lewis Chen[/i]

1996 AIME Problems, 13

In triangle $ABC, AB=\sqrt{30}, AC=\sqrt{6},$ and $BC=\sqrt{15}.$ There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$ and $\angle ADB$ is a right angle. The ratio \[ \frac{\text{Area}(\triangle ADB)}{\text{Area}(\triangle ABC)} \] can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1996 AMC 12/AHSME, 30

A hexagon inscribed in a circle has three consecutive sides each of length $3$ and three consecutive sides each of length $5$. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length $3$ and the other with three sides each of length $5$, has length equal to $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. $\text{(A)}\ 309 \qquad \text{(B)}\ 349 \qquad \text{(C)}\ 369 \qquad \text{(D)}\ 389\qquad \text{(E)}\ 409$

1996 Irish Math Olympiad, 1

For each positive integer $ n$, let $ f(n)$ denote the greatest common divisor of $ n!\plus{}1$ and $ (n\plus{}1)!$. Find, without proof, a formula for $ f(n)$.

2017 SDMO (High School), 4

For each positive integer $n$, let $\tau\left(n\right)$ be the number of positive divisors of $n$. It is well-known that if $a$ and $b$ are relatively prime positive integers then $\tau\left(ab\right)=\tau\left(a\right)\tau\left(b\right)$. Does the converse hold? That is, if $a$ and $b$ are positive integers such that $\tau\left(ab\right)=\tau\left(a\right)\tau\left(b\right)$, then is it necessarily true that $a$ and $b$ are relatively prime? Either give a proof, or find a counter-example.

1977 IMO Longlists, 12

Let $z$ be an integer $> 1$ and let $M$ be the set of all numbers of the form $z_k = 1+z + \cdots+ z^k, \ k = 0, 1,\ldots$. Determine the set $T$ of divisors of at least one of the numbers $z_k$ from $M.$

1961 All-Soviet Union Olympiad, 4

Given are arbitrary integers $a,b,p$. Prove that there always exist relatively prime integers $k$ and $\ell$ such that $ak+b\ell$ is divisible by $p$.

2003 Moldova Team Selection Test, 1

Each side of an arbitrarly triangle is divided into $ 2002$ congruent segments. After that, each vertex is joined with all "division" points on the opposite side. Prove that the number of the regions formed, in which the triangle is divided, is divisible by $ 6$. [i]Proposer[/i]: [b]Dorian Croitoru[/b]

2009 AMC 12/AHSME, 22

A regular octahedron has side length $ 1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $ \frac {a\sqrt {b}}{c}$, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ b$ is not divisible by the square of any prime. What is $ a \plus{} b \plus{} c$? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$

2014 Online Math Open Problems, 26

Qing initially writes the ordered pair $(1,0)$ on a blackboard. Each minute, if the pair $(a,b)$ is on the board, she erases it and replaces it with one of the pairs $(2a-b,a)$, $(2a+b+2,a)$ or $(a+2b+2,b)$. Eventually, the board reads $(2014,k)$ for some nonnegative integer $k$. How many possible values of $k$ are there? [i]Proposed by Evan Chen[/i]

2014 Online Math Open Problems, 20

Let $n = 2188 = 3^7+1$ and let $A_0^{(0)}, A_1^{(0)}, ..., A_{n-1}^{(0)}$ be the vertices of a regular $n$-gon (in that order) with center $O$ . For $i = 1, 2, \dots, 7$ and $j=0,1,\dots,n-1$, let $A_j^{(i)}$ denote the centroid of the triangle \[ \triangle A_j^{(i-1)} A_{j+3^{7-i}}^{(i-1)} A_{j+2 \cdot 3^{7-i}}^{(i-1)}. \] Here the subscripts are taken modulo $n$. If \[ \frac{|OA_{2014}^{(7)}|}{|OA_{2014}^{(0)}|} = \frac{p}{q} \] for relatively prime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Yang Liu[/i]

2012 NIMO Problems, 5

A number is called [i]purple[/i] if it can be expressed in the form $\frac{1}{2^a 5^b}$ for positive integers $a > b$. The sum of all purple numbers can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Eugene Chen[/i]

2008 Vietnam National Olympiad, 3

Let $ m \equal{} 2007^{2008}$, how many natural numbers n are there such that $ n < m$ and $ n(2n \plus{} 1)(5n \plus{} 2)$ is divisible by $ m$ (which means that $ m \mid n(2n \plus{} 1)(5n \plus{} 2)$) ?

PEN A Problems, 17

Let $m$ and $n$ be natural numbers such that \[A=\frac{(m+3)^{n}+1}{3m}\] is an integer. Prove that $A$ is odd.

2010 Balkan MO, 4

For each integer $n$ ($n \ge 2$), let $f(n)$ denote the sum of all positive integers that are at most $n$ and not relatively prime to $n$. Prove that $f(n+p) \neq f(n)$ for each such $n$ and every prime $p$.

2011 USA TSTST, 3

Prove that there exists a real constant $c$ such that for any pair $(x,y)$ of real numbers, there exist relatively prime integers $m$ and $n$ satisfying the relation \[ \sqrt{(x-m)^2 + (y-n)^2} < c\log (x^2 + y^2 + 2). \]

PEN B Problems, 6

Suppose that $m$ does not have a primitive root. Show that \[a^{ \frac{\phi(m)}{2}}\equiv 1 \; \pmod{m}\] for every $a$ relatively prime $m$.

2013 NIMO Problems, 6

For each positive integer $n$, let $H_n = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$. If \[ \sum_{n=4}^{\infty} \frac{1}{nH_nH_{n-1}} = \frac{M}{N} \] for relatively prime positive integers $M$ and $N$, compute $100M+N$. [i]Based on a proposal by ssilwa[/i]