This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 567

IV Soros Olympiad 1997 - 98 (Russia), 9.5

Given triangle $ABC$. Find the locus of points $M$ such that there is a rotation with center at $M$ that takes $C$ to a certain point on side $AB$.

2013 AIME Problems, 4

In the array of $13$ squares shown below, $8$ squares are colored red, and the remaining $5$ squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated $90^{\circ}$ around the central square is $\tfrac{1}{n}$, where $n$ is a positive integer. Find $n$. [asy] draw((0,0)--(1,0)--(1,1)--(0,1)--(0,0)); draw((2,0)--(2,2)--(3,2)--(3,0)--(3,1)--(2,1)--(4,1)--(4,0)--(2,0)); draw((1,2)--(1,4)--(0,4)--(0,2)--(0,3)--(1,3)--(-1,3)--(-1,2)--(1,2)); draw((-1,1)--(-3,1)--(-3,0)--(-1,0)--(-2,0)--(-2,1)--(-2,-1)--(-1,-1)--(-1,1)); draw((0,-1)--(0,-3)--(1,-3)--(1,-1)--(1,-2)--(0,-2)--(2,-2)--(2,-1)--(0,-1)); size(100); [/asy]

2007 F = Ma, 21

If the rotational inertia of a sphere about an axis through the center of the sphere is $I$, what is the rotational inertia of another sphere that has the same density, but has twice the radius? $ \textbf{(A)}\ 2I \qquad\textbf{(B)}\ 4I \qquad\textbf{(C)}\ 8I\qquad\textbf{(D)}\ 16I\qquad\textbf{(E)}\ 32I $

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.

1997 Pre-Preparation Course Examination, 5

Let $H$ be the orthocenter of the triangle $ABC$ and $P$ an arbitrary point on circumcircle of triangle. $BH$ meets $AC$ at $E$. $PAQB$ and $PARC$ are two parallelograms and $AQ$ meets $HR$ at $X$. Show that $EX \parallel AP$.

2011 Canadian Students Math Olympiad, 4

Circles $\Gamma_1$ and $\Gamma_2$ have centers $O_1$ and $O_2$ and intersect at $P$ and $Q$. A line through $P$ intersects $\Gamma_1$ and $\Gamma_2$ at $A$ and $B$, respectively, such that $AB$ is not perpendicular to $PQ$. Let $X$ be the point on $PQ$ such that $XA=XB$ and let $Y$ be the point within $AO_1 O_2 B$ such that $AYO_1$ and $BYO_2$ are similar. Prove that $2\angle{O_1 AY}=\angle{AXB}$. [i]Author: Matthew Brennan[/i]

2006 AIME Problems, 8

Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}$. Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$. [asy] size(150);defaultpen(linewidth(0.7)+fontsize(10)); draw(rotate(45)*polygon(4)); pair F=(1+sqrt(2))*dir(180), C=(1+sqrt(2))*dir(0), A=F+sqrt(2)*dir(45), E=F+sqrt(2)*dir(-45), B=C+sqrt(2)*dir(180-45), D=C+sqrt(2)*dir(45-180); draw(F--(-1,0)^^C--(1,0)^^A--B--C--D--E--F--cycle); pair point=origin; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$\mathcal{P}$", intersectionpoint( A--(-1,0), F--(0,1) )); label("$\mathcal{S}$", intersectionpoint( E--(-1,0), F--(0,-1) )); label("$\mathcal{R}$", intersectionpoint( D--(1,0), C--(0,-1) )); label("$\mathcal{Q}$", intersectionpoint( B--(1,0), C--(0,1) )); label("$\mathcal{T}$", point); dot(A^^B^^C^^D^^E^^F);[/asy]

2014 PUMaC Team, 12

Tags: rotation
Let $n$ be the number of possible ways to place six orange balls, six black balls, and six white balls in a circle (two placements are considered equivalent if one can be rotated to fit the other). What is the remainder when $n$ is divided by $1000$?

MathLinks Contest 7th, 4.2

Find the number of finite sequences $ \{a_1,a_2,\ldots,a_{2n\plus{}1}\}$, formed with nonnegative integers, for which $ a_1\equal{}a_{2n\plus{}1}\equal{}0$ and $ |a_k \minus{}a_{k\plus{}1}|\equal{}1$, for all $ k\in\{1,2,\ldots,2n\}$.

1966 AMC 12/AHSME, 34

Let $r$ be the speed in miles per hour at which a wheel, $11$ feet in circumference, travels. If the time for a complete rotation of the wheel is shortened by $\tfrac{1}{4}$ of a second, the speed $r$ is increased by $5$ miles per hour. The $r$ is: $\text{(A)}\ 9\qquad \text{(B)}\ 10\qquad \text{(C)}\ 10\tfrac{1}{2}\qquad \text{(D)}\ 11\qquad \text{(E)}\ 12$

1998 Flanders Math Olympiad, 3

a magical $3\times3$ square is a $3\times3$ matrix containing all number from 1 to 9, and of which the sum of every row, every column, every diagonal, are all equal. Determine all magical $3\times3$ square

2007 Baltic Way, 7

A [i]squiggle[/i] is composed of six equilateral triangles with side length $1$ as shown in the figure below. Determine all possible integers $n$ such that an equilateral triangle with side length $n$ can be fully covered with [i]squiggle[/i]s (rotations and reflections of [i]squiggle[/i]s are allowed, overlappings are not). [asy] import graph; size(100); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; draw((0,0)--(0.5,1),linewidth(2pt)); draw((0.5,1)--(1,0),linewidth(2pt)); draw((0,0)--(3,0),linewidth(2pt)); draw((1.5,1)--(2,0),linewidth(2pt)); draw((2,0)--(2.5,1),linewidth(2pt)); draw((0.5,1)--(2.5,1),linewidth(2pt)); draw((1,0)--(2,2),linewidth(2pt)); draw((2,2)--(3,0),linewidth(2pt)); dot((0,0),ds); dot((1,0),ds); dot((0.5,1),ds); dot((2,0),ds); dot((1.5,1),ds); dot((3,0),ds); dot((2.5,1),ds); dot((2,2),ds); clip((-4.28,-10.96)--(-4.28,6.28)--(16.2,6.28)--(16.2,-10.96)--cycle);[/asy]

1996 AIME Problems, 14

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

1951 Miklós Schweitzer, 15

Let the line $ z\equal{}x, \, y\equal{}0$ rotate at a constant speed about the $ z$-axis; let at the same time the point of intersection of this line with the $ z$-axis be displaced along the $ z$-axis at constant speed. (a) Determine that surface of rotation upon which the resulting helical surface can be developed (i.e. isometrically mapped). (b) Find those lines of the surface of rotation into which the axis and the generators of the helical surface will be mapped by this development.

1989 IMO Longlists, 8

Let $ Ax,By$ be two perpendicular semi-straight lines, being not complanar, (non-coplanar rays) such that $ AB$ is the their common perpendicular, and let $ M$ and $ N$ be the two variable points on $ Ax$ and $ Bx,$ respectively, such that $ AM \plus{} BN \equal{} MN.$ [b](a)[/b] Prove that there exist infinitely many lines being co-planar with each of the straight lines $ MN.$ [b](b)[/b] Prove that there exist infinitely many rotations around a fixed axis $ \delta$ mapping the line $ Ax$ onto a line coplanar with each of the lines $ MN.$

2006 China Team Selection Test, 3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

2008 Sharygin Geometry Olympiad, 5

(Kiev olympiad, 8--9) Reconstruct the square $ ABCD$, given its vertex $ A$ and distances of vertices $ B$ and $ D$ from a fixed point $ O$ in the plane.

2007 China Western Mathematical Olympiad, 4

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

2020 AIME Problems, 4

Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$, $B(0,12)$, $C(16,0)$, $A'(24,18)$, $B'(36,18)$, and $C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$, where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.

2021 Yasinsky Geometry Olympiad, 2

Given a rectangle $ABCD$, which is located on the line $\ell$ They want it "turn over" by first turning around the vertex $D$, and then as point $C$ appears on the line $\ell$ - by making a turn around the vertex $C$ (see figure). What is the length of the curve along which the vertex $A$ is moving , at such movement, if $AB = 30$ cm, $BC = 40$ cm? (Alexey Panasenko) [img]https://cdn.artofproblemsolving.com/attachments/d/9/3cca36b08771b1897e385d43399022049bbcde.png[/img]

2007 Hungary-Israel Binational, 2

Given is an ellipse $ e$ in the plane. Find the locus of all points $ P$ in space such that the cone of apex $ P$ and directrix $ e$ is a right circular cone.

2000 AMC 12/AHSME, 10

The point $ P \equal{} (1,2,3)$ is reflected in the $ xy$-plane, then its image $ Q$ is rotated by $ 180^\circ$ about the $ x$-axis to produce $ R$, and finally, $ R$ is translated by 5 units in the positive-$ y$ direction to produce $ S$. What are the coordinates of $ S$? $ \textbf{(A)}\ (1,7, \minus{} 3) \qquad \textbf{(B)}\ ( \minus{} 1,7, \minus{} 3) \qquad \textbf{(C)}\ ( \minus{} 1, \minus{} 2,8) \qquad \textbf{(D)}\ ( \minus{} 1,3,3) \qquad \textbf{(E)}\ (1,3,3)$

2004 Harvard-MIT Mathematics Tournament, 2

How many ways can you mark 8 squares of an $8\times8$ chessboard so that no two marked squares are in the same row or column, and none of the four corner squares is marked? (Rotations and reflections are considered different.)

2012 India IMO Training Camp, 2

Let $P(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_mz^m$ be a polynomial with complex coefficients such that $a_m\neq 0, a_n\neq 0$ and $n>m$. Prove that \[\text{max}_{|z|=1}\{|P(z)|\}\ge\sqrt{2|a_ma_n|+\sum_{k=m}^{n} |a_k|^2}\]