This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 260

1964 Putnam, B3

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for all $\alpha \in \mathbb{R}_{>0}$, the sequence $(a_n)_{n \in \mathbb{N}}$ defined as $a_n = f(n\alpha)$ satisfies $\lim_{n \to \infty} a_n = 0$. Is it necessarily true that $\lim_{x \to +\infty} f(x) = 0$?

2011 Macedonia National Olympiad, 4

Tags: function , search , algebra
Find all functions $~$ $f: \mathbb{R} \to \mathbb{R}$ $~$ which satisfy the equation \[ f(x+yf(x))\, =\, f(f(x)) + xf(y)\, . \]

2010 Tournament Of Towns, 7

A multi-digit number is written on the blackboard. Susan puts in a number of plus signs between some pairs of adjacent digits. The addition is performed and the process is repeated with the sum. Prove that regardless of what number was initially on the blackboard, Susan can always obtain a single-digit number in at most ten steps.

1989 Putnam, A3

Tags: search , algebra
Prove that all roots of $ 11z^{10} \plus{} 10iz^9 \plus{} 10iz \minus{}11 \equal{} 0$ have unit modulus (or equivalent $ |z| \equal{} 1$).

1994 AIME Problems, 11

Ninety-four bricks, each measuring $4''\times10''\times19'',$ are to stacked one on top of another to form a tower 94 bricks tall. Each brick can be oriented so it contribues $4''$ or $10''$ or $19''$ to the total height of the tower. How many differnt tower heights can be achieved using all 94 of the bricks?

2006 India Regional Mathematical Olympiad, 4

A $ 6\times 6$ square is dissected in to 9 rectangles by lines parallel to its sides such that all these rectangles have integer sides. Prove that there are always [b]two[/b] congruent rectangles.

PEN A Problems, 8

The integers $a$ and $b$ have the property that for every nonnegative integer $n$ the number of $2^n{a}+b$ is the square of an integer. Show that $a=0$.

1998 Spain Mathematical Olympiad, 1

Tags: algebra , search
Find the tangents of the angles of a triangle knowing that they are positive integers.

2019 Danube Mathematical Competition, 1

Find all prime $p$ numbers such that $p^3-4p+9$ is perfect square.

PEN H Problems, 49

Show that the only solutions of the equation $x^{3}-3xy^2 -y^3 =1$ are given by $(x,y)=(1,0),(0,-1),(-1,1),(1,-3),(-3,2),(2,1)$.

1989 AIME Problems, 15

Point $P$ is inside $\triangle ABC$. Line segments $APD$, $BPE$, and $CPF$ are drawn with $D$ on $BC$, $E$ on $AC$, and $F$ on $AB$ (see the figure at right). Given that $AP=6$, $BP=9$, $PD=6$, $PE=3$, and $CF=20$, find the area of $\triangle ABC$. [asy] size(200); pair A=origin, B=(7,0), C=(3.2,15), D=midpoint(B--C), F=(3,0), P=intersectionpoint(C--F, A--D), ex=B+40*dir(B--P), E=intersectionpoint(B--ex, A--C); draw(A--B--C--A--D^^C--F^^B--E); pair point=P; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$P$", P, dir(0));[/asy]

1976 Canada National Olympiad, 5

Prove that a positive integer is a sum of at least two consecutive positive integers if and only if it is not a power of two.

2005 Irish Math Olympiad, 5

Suppose that $ m$ and $ n$ are odd integers such that $ m^2\minus{}n^2\plus{}1$ divides $ n^2\minus{}1$. Prove that $ m^2\minus{}n^2\plus{}1$ is a perfect square.

2011 ELMO Shortlist, 7

Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$. [i]Alex Zhu.[/i]

2007 Croatia Team Selection Test, 3

Tags: search , geometry
Let $ABC$ be a triangle such that $|AC|>|AB|$. Let $X$ be on line $AB$ (closer to $A$) such that $|BX|=|AC|$ and let $Y$ be on the segment $AC$ such that $|CY|=|AB|$. Intersection of lines $XY$ and bisector of $BC$ is point $P$. Prove that $\angle BPC+\angle BAC = 180^\circ$.

2008 Moldova Team Selection Test, 4

A non-empty set $ S$ of positive integers is said to be [i]good[/i] if there is a coloring with $ 2008$ colors of all positive integers so that no number in $ S$ is the sum of two different positive integers (not necessarily in $ S$) of the same color. Find the largest value $ t$ can take so that the set $ S\equal{}\{a\plus{}1,a\plus{}2,a\plus{}3,\ldots,a\plus{}t\}$ is good, for any positive integer $ a$. [hide="P.S."]I have the feeling that I've seen this problem before, so if I'm right, maybe someone can post some links...[/hide]

2013 NIMO Problems, 3

Tags: college , search
At Stanford in 1988, human calculator Shakuntala Devi was asked to compute $m = \sqrt[3]{61{,}629{,}875}$ and $n = \sqrt[7]{170{,}859{,}375}$. Given that $m$ and $n$ are both integers, compute $100m+n$. [i]Proposed by Evan Chen[/i]

1992 AIME Problems, 1

Find the sum of all positive rational numbers that are less than $10$ and that have denominator $30$ when written in lowest terms.

2007 India Regional Mathematical Olympiad, 2

Let $ a, b, c$ be three natural numbers such that $ a < b < c$ and $ gcd (c \minus{} a, c \minus{} b) \equal{} 1$. Suppose there exists an integer $ d$ such that $ a \plus{} d, b \plus{} d, c \plus{} d$ form the sides of a right-angled triangle. Prove that there exist integers, $ l,m$ such that $ c \plus{} d \equal{} l^{2} \plus{} m^{2} .$ [b][Weightage 17/100][/b]

2002 AMC 12/AHSME, 17

Let $f(x)=\sqrt{\sin^4 x + 4\cos^2 x}-\sqrt{\cos^4x + 4\sin^2x}$. An equivalent form of $f(x)$ is $\textbf{(A) }1-\sqrt2\sin x\qquad\textbf{(B) }-1+\sqrt2\cos x\qquad\textbf{(C) }\cos\dfrac x2-\sin\dfrac x2$ $\textbf{(D) }\cos x-\sin x\qquad\textbf{(E) }\cos2x$

1998 Brazil National Olympiad, 3

Two mathematicians, lost in Berlin, arrived on the corner of Barbarossa street with Martin Luther street and need to arrive on the corner of Meininger street with Martin Luther street. Unfortunately they don't know which direction to go along Martin Luther Street to reach Meininger Street nor how far it is, so they must go fowards and backwards along Martin Luther street until they arrive on the desired corner. What is the smallest value for a positive integer $k$ so that they can be sure that if there are $N$ blocks between Barbarossa street and Meininger street then they can arrive at their destination by walking no more than $kN$ blocks (no matter what $N$ turns out to be)?

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

2002 Silk Road, 2

I tried to search SRMC problems,but i didn't find them(I found only SRMC 2006).Maybe someone know where on this site i could find SRMC problems?I have all SRMC problems,if someone want i could post them, :wink: Here is one of them,this is one nice inequality from first SRMC: Let $ n$ be an integer with $ n>2$ and $ a_{1},a_{2},\dots,a_{n}\in R^{\plus{}}$.Given any positive integers $ t,k,p$ with $ 1<t<n$,set $ m\equal{}k\plus{}p$,prove the following inequalities: a) $ \frac{a_{1}^{p}}{a_{2}^{k}\plus{}a_{3}^{k}\plus{}\dots\plus{}a_{t}^{k}}\plus{}\frac{a_{2}^{p}}{a_{3}^{k}\plus{}a_{4}^{k}\plus{}\dots\plus{}a_{t\plus{}1}^{k}}\plus{}\dots\plus{}\frac{a_{n\minus{}1}^{p}}{a_{n}^{k}\plus{}a_{1}^{k}\plus{}\dots\plus{}a_{t\minus{}2}^{k}}\plus{}\frac{a_{n}^{p}}{a_{1}^{k}\plus{}a_{2}^{k}\plus{}\dots\plus{}a_{t\minus{}1}^{k}}\geq\frac{(a_{1}^{p}\plus{}a_{2}^{p}\dots\plus{}a_{n}^{p})^{2}}{(t\minus{}1) ( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})}$ b)$ \frac{a_{2}^{k}\plus{}a_{3}^{k}\dots\plus{}a_{t}^{k}}{a_{1}^{p}}\plus{}\frac{a_{3}^{k}\plus{}a_{4}^{k}\dots\plus{}a_{t\plus{}1}^{k}}{a_{2}^{p}}\plus{}\dots\plus{}\frac{a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{t\minus{}1}^{k}}{a_{n}^{p}}\geq\frac{(t\minus{}1)(a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{n}^{k})^{2}}{( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})}$ :wink:

2002 Switzerland Team Selection Test, 5

Tags: search , function , algebra
Find all $f: R\rightarrow R$ such that (i) The set $\{\frac{f(x)}{x}| x\in R-\{0\}\}$ is finite (ii) $f(x-1-f(x)) = f(x)-1-x$ for all $x$

2010 Romania National Olympiad, 4

On the exterior of a non-equilateral triangle $ABC$ consider the similar triangles $ABM,BCN$ and $CAP$, such that the triangle $MNP$ is equilateral. Find the angles of the triangles $ABM,BCN$ and $CAP$. [i]Nicolae Bourbacut[/i]