Found problems: 260
1992 India Regional Mathematical Olympiad, 6
Prove that \[ 1 < \frac{1}{1001} + \frac{1}{1002} + \frac{1}{1003} + \cdots + \frac{1}{3001} < 1 \frac{1}{3}. \]
2007 Bulgaria National Olympiad, 3
Find the least positive integer $n$ such that $\cos\frac{\pi}{n}$ cannot be written in the form $p+\sqrt{q}+\sqrt[3]{r}$ with $p,q,r\in\mathbb{Q}$.
[i]O. Mushkarov, N. Nikolov[/i]
[hide]No-one in the competition scored more than 2 points[/hide]
2007 IMS, 3
Prove that $\mathbb R^{2}$ has a dense subset such that has no three collinear points.
1995 AIME Problems, 2
Find the last three digits of the product of the positive roots of \[ \sqrt{1995}x^{\log_{1995}x}=x^2. \]
1994 All-Russian Olympiad, 4
Real numbers are written on the squares of an infinite grid. Two figures consisting of finitely many squares are given. They may be translated anywhere on the grid as long as their squares coincide with those of the grid. It is known that wherever the first figure is translated, the sum of numbers it covers is positive. Prove that the second figure can be translated so that the sum of the numbers it covers is also positive.
1996 ITAMO, 2
Show that the equation $a^2 + b^2 = c^2 + 3$ has infinetely many triples of integers $a, b, c$ that are solutions.
1969 Canada National Olympiad, 5
Let $ABC$ be a triangle with sides of length $a$, $b$ and $c$. Let the bisector of the angle $C$ cut $AB$ in $D$. Prove that the length of $CD$ is \[ \frac{2ab\cos \frac{C}{2}}{a+b}. \]
2022 CCA Math Bonanza, T5
Maggie Waggie organizes a pile of 127 calculus tests in alphabetical order, with Joccy Woccy's test being 64th in the pile. While Maggie isn't looking, Joccy walks over and randomly scrambles the entire pile of tests. When Maggie returns, she is oblivious to the fact that Joccy has tampered with the list. She uses a binary search algorithm to find Joccy's test, where she looks at the test in the middle of the pile. If the test is not Joccy's, she binary searches the top half of the list if the test appears after Joccy's name when arranged alphabetically, or the bottom half of the list otherwise. The probability that Maggie finds Joccy's test can be expressed as $\frac{p}{q}$. Compute $p+q$.
[i]2022 CCA Math Bonanza Team Round #5[/i]
1986 Balkan MO, 2
Let $ABCD$ be a tetrahedron and let $E,F,G,H,K,L$ be points lying on the edges $AB,BC,CD$ $,DA,DB,DC$ respectively, in such a way that
\[AE \cdot BE = BF \cdot CF = CG \cdot AG= DH \cdot AH=DK \cdot BK=DL \cdot CL.\]
Prove that the points $E,F,G,H,K,L$ all lie on a sphere.
2005 China Team Selection Test, 2
Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$ where $[x]$ denotes the largest integer not exceeding $x$.
2004 Baltic Way, 2
Let $ P(x)$ be a polynomial with a non-negative coefficients. Prove that if the inequality $ P\left(\frac {1}{x}\right)P(x)\geq 1$ holds for $ x \equal{} 1$, then this inequality holds for each positive $ x$.
1989 IMO Longlists, 52
Let $ f$ be a function from the real numbers to the real numbers such that $ f(1) \equal{} 1, f(a\plus{}b) \equal{} f(a)\plus{}f(b)$ for all $ a, b,$ and $ f(x)f \left( \frac{1}{x} \right) \equal{} 1$ for all $ x \neq 0.$ Prove that $ f(x) \equal{} x$ for all real numbers $ x.$
2007 Olympic Revenge, 1
Let $a$, $b$, $n$ be positive integers with $a,b > 1$ and $\gcd(a,b) = 1$. Prove that $n$ divides $\phi\left(a^{n}+b^{n}\right)$.
2010 Postal Coaching, 5
Let $a, b, c$ be integers such that \[\frac ab+\frac bc+\frac ca= 3\] Prove that $abc$ is a cube of an integer.
1999 USAMTS Problems, 1
The digits of the three-digit integers $a, b,$ and $c$ are the nine nonzero digits $1,2,3,\cdots 9$ each of them appearing exactly once. Given that the ratio $a:b:c$ is $1:3:5$, determine $a, b,$ and $c$.
1979 AMC 12/AHSME, 27
An ordered pair $( b , c )$ of integers, each of which has absolute value less than or equal to five, is chosen at random, with each
such ordered pair having an equal likelihood of being chosen. What is the probability that the equation $x^ 2 + bx + c = 0$ will
[i]not[/i] have distinct positive real roots?
$\textbf{(A) }\frac{106}{121}\qquad\textbf{(B) }\frac{108}{121}\qquad\textbf{(C) }\frac{110}{121}\qquad\textbf{(D) }\frac{112}{121}\qquad\textbf{(E) }\text{none of these}$
1993 India National Olympiad, 5
Show that there is a natural number $n$ such that $n!$ when written in decimal notation ends exactly in 1993 zeros.
2002 Bundeswettbewerb Mathematik, 4
In an acute-angled triangle $ABC$, we consider the feet $H_a$ and $H_b$ of the altitudes from $A$ and $B$, and the intersections $W_a$ and $W_b$ of the angle bisectors from $A$ and $B$ with the opposite sides $BC$ and $CA$ respectively. Show that the centre of the incircle $I$ of triangle $ABC$ lies on the segment $H_aH_b$ if and only if the centre of the circumcircle $O$ of triangle $ABC$ lies on the segment $W_aW_b$.
2011 Math Prize For Girls Problems, 1
If $m$ and $n$ are integers such that $3m + 4n = 100$, what is the smallest possible value of $\left| m - n \right|$ ?
2011 Morocco National Olympiad, 3
Find all functions $f : \mathbb{R} \to \mathbb{R} $ which verify the relation
\[(x-2)f(y)+f(y+2f(x))= f(x+yf(x)), \qquad \forall x,y \in \mathbb R.\]
2002 South africa National Olympiad, 5
In acute-angled triangle $ABC$, a semicircle with radius $r_a$ is constructed with its base on $BC$ and tangent to the other two sides. $r_b$ and $r_c$ are defined similarly. $r$ is the radius of the incircle of $ABC$. Show that \[ \frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}. \]
2012 Pre-Preparation Course Examination, 5
The $2^{nd}$ order differentiable function $f:\mathbb R \longrightarrow \mathbb R$ is in such a way that for every $x\in \mathbb R$ we have $f''(x)+f(x)=0$.
[b]a)[/b] Prove that if in addition, $f(0)=f'(0)=0$, then $f\equiv 0$.
[b]b)[/b] Use the previous part to show that there exist $a,b\in \mathbb R$ such that $f(x)=a\sin x+b\cos x$.
2010 Postal Coaching, 5
Find the first integer $n > 1$ such that the average of $1^2 , 2^2 ,\cdots, n^2$ is itself a perfect square.
2014 NIMO Problems, 5
Let $r$, $s$, $t$ be the roots of the polynomial $x^3+2x^2+x-7$. Then \[ \left(1+\frac{1}{(r+2)^2}\right)\left(1+\frac{1}{(s+2)^2}\right)\left(1+\frac{1}{(t+2)^2}\right)=\frac{m}{n} \] for relatively prime positive integers $m$ and $n$. Compute $100m+n$.
[i]Proposed by Justin Stevens[/i]
2000 Korea - Final Round, 3
The real numbers $a,b,c,x,y,$ and $z$ are such that $a>b>c>0$ and $x>y>z>0$. Prove that
\[\frac {a^2x^2}{(by+cz)(bz+cy)}+\frac{b^2y^2}{(cz+ax)(cx+az)}+\frac{c^2z^2}{(ax+by)(ay+bx)}\ge \frac{3}{4}\]