This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 29

2001 AMC 10, 10

Tags: sfft
If $ x$, $ y$, and $ z$ are positive with $ xy \equal{} 24$, $ xz \equal{} 48$, and $ yz \equal{} 72$, then $ x \plus{} y \plus{} z$ is $ \textbf{(A) }18\qquad\textbf{(B) }19\qquad\textbf{(C) }20\qquad\textbf{(D) }22\qquad\textbf{(E) }24$

2015 AMC 10, 23

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2015 AMC 12/AHSME, 10

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$? $\textbf{(A) }8\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad\textbf{(E) }26$

2012 Pan African, 1

The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$, erases them and she writes instead the number $x + y + xy$. She continues to do this until only one number is left on the board. What are the possible values of the final number?

1998 Harvard-MIT Mathematics Tournament, 6

Tags: sfft , symmetry
How many pairs of positive integers $(a,b)$ with $a\leq b$ satisfy $\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}$?

2015 AMC 12/AHSME, 18

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

2015 AMC 10, 15

Consider the set of all fractions $\tfrac{x}{y},$ where $x$ and $y$ are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by $1$, the value of the fraction is increased by $10\%$? $ \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinitely many} $

2001 National Olympiad First Round, 11

Tags: quadratic , vieta , sfft
For how many integers $n$, does the equation system \[\begin{array}{rcl} 2x+3y &=& 7\\ 5x + ny &=& n^2 \end{array}\] have a solution over integers? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ \text{None of the preceding} $

1993 AMC 12/AHSME, 19

How many ordered pairs $(m,n)$ of positive integers are solutions to $\frac{4}{m}+\frac{2}{n}=1$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{more than}\ 4 $

2021 AMC 12/AHSME Fall, 5

Call a fraction $\frac{a}{b}$, not necessarily in the simplest form [i]special[/i] if $a$ and $b$ are positive integers whose sum is $15$. How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$

2012 USAMTS Problems, 2

Tags: sfft
Find all triples $(a, b, c)$ of positive integers with $a\le b\le c$ such that\[\left(1+\dfrac1{a}\right)\left(1+\dfrac1{b}\right)\left(1+\dfrac1{c}\right)=3.\]

2021 AMC 10 Fall, 7

Call a fraction $\frac{a}{b}$, not necessarily in the simplest form [i]special[/i] if $a$ and $b$ are positive integers whose sum is $15$. How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$

2021 AMC 10 Spring, 9

Tags: sfft
What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$? $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ \frac14 \qquad\textbf{(C)}\ \frac12 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2$

1987 AIME Problems, 5

Find $3x^2 y^2$ if $x$ and $y$ are integers such that $y^2 + 3x^2 y^2 = 30x^2 + 517$.

1983 AMC 12/AHSME, 24

How many non-congruent right triangles are there such that the perimeter in $\text{cm}$ and the area in $\text{cm}^2$ are numerically equal? $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 4 \qquad \text{(E)} \ \text{infinitely many}$

2010 AIME Problems, 5

Positive numbers $ x$, $ y$, and $ z$ satisfy $ xyz \equal{} 10^{81}$ and $ (\log_{10}x)(\log_{10} yz) \plus{} (\log_{10}y) (\log_{10}z) \equal{} 468$. Find $ \sqrt {(\log_{10}x)^2 \plus{} (\log_{10}y)^2 \plus{} (\log_{10}z)^2}$.

2013 Princeton University Math Competition, 7

Find the total number of triples of integers $(x,y,n)$ satisfying the equation $\tfrac 1x+\tfrac 1y=\tfrac1{n^2}$, where $n$ is either $2012$ or $2013$.

2010 Stanford Mathematics Tournament, 18

Tags: sfft
In an $n$-by-$m$ grid, $1$ row and $1$ column are colored blue, the rest of the cells are white. If precisely $\frac{1}{2010}$ of the cells in the grid are blue, how many values are possible for the ordered pair $(n,m)$

2019 India PRMO, 11

Tags: sfft , algebra
Find the largest value of $a^b$ such that the positive integers $a,b>1$ satisfy $$a^bb^a+a^b+b^a=5329$$

2021 AMC 12/AHSME Spring, 7

Tags: sfft
What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$? $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ \frac14 \qquad\textbf{(C)}\ \frac12 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2$

2010 Purple Comet Problems, 24

Find the number of ordered pairs of integers $(m, n)$ that satisfy $20m-10n = mn$.

2006 Stanford Mathematics Tournament, 6

Tags: sfft
Let $a,b,c$ be real numbers satisfying: \[ab-a=b+119\] \[bc-b=c+59\] \[ca-c=a+71\] Determine all possible values of $a+b+c$.

1979 IMO Longlists, 34

Notice that in the fraction $\frac{16}{64}$ we can perform a simplification as $\cancel{\frac{16}{64}}=\frac 14$ obtaining a correct equality. Find all fractions whose numerators and denominators are two-digit positive integers for which such a simplification is correct.

1996 AIME Problems, 8

Tags: sfft
The harmonic mean of two positive numbers is the reciprocal of the arithmetic mean of their reciprocals. For how many ordered pairs of positive integers $(x,y)$ with $x<y$ is the harmonic mean of $x$ and $y$ equal to $6^{20}.$

2014 AIME Problems, 14

Let $m$ be the largest real solution to the equation \[\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}= x^2-11x-4.\] There are positive integers $a,b,c$ such that $m = a + \sqrt{b+\sqrt{c}}$. Find $a+b+c$.