This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 47

2022 Bolivia Cono Sur TST, P6

On $\triangle ABC$ let points $D,E$ on sides $AB,BC$ respectivily such that $AD=DE=EC$ and $AE \ne DC$. Let $P$ the intersection of lines $AE, DC$, show that $\angle ABC=60$ if $AP=CP$.

2017 Polish MO Finals, 1

Points $P$ and $Q$ lie respectively on sides $AB$ and $AC$ of a triangle $ABC$ and $BP=CQ$. Segments $BQ$ and $CP$ cross at $R$. Circumscribed circles of triangles $BPR$ and $CQR$ cross again at point $S$ different from $R$. Prove that point $S$ lies on the bisector of angle $BAC$.

2020 USA TSTST, 2

Let $ABC$ be a scalene triangle with incenter $I$. The incircle of $ABC$ touches $\overline{BC},\overline{CA},\overline{AB}$ at points $D,E,F$, respectively. Let $P$ be the foot of the altitude from $D$ to $\overline{EF}$, and let $M$ be the midpoint of $\overline{BC}$. The rays $AP$ and $IP$ intersect the circumcircle of triangle $ABC$ again at points $G$ and $Q$, respectively. Show that the incenter of triangle $GQM$ coincides with $D$. [i]Zack Chroman and Daniel Liu[/i]

2006 Germany Team Selection Test, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2017 China Northern MO, 5

Triangle \(ABC\) has \(AB > AC\) and \(\angle A = 60^\circ \). Let \(M\) be the midpoint of \(BC\), \(N\) be the point on segment \(AB\) such that \(\angle BNM = 30^\circ\). Let \(D,E\) be points on \(AB, AC\) respectively. Let \(F, G, H\) be the midpoints of \(BE, CD, DE\) respectively. Let \(O\) be the circumcenter of triangle \(FGH\). Prove that \(O\) lies on line \(MN\).

2024 Thailand TSTST, 9

Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).

2006 Switzerland Team Selection Test, 3

Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.

2021 USA TSTST, 8

Let $ABC$ be a scalene triangle. Points $A_1,B_1$ and $C_1$ are chosen on segments $BC,CA$ and $AB$, respectively, such that $\triangle A_1B_1C_1$ and $\triangle ABC$ are similar. Let $A_2$ be the unique point on line $B_1C_1$ such that $AA_2=A_1A_2$. Points $B_2$ and $C_2$ are defined similarly. Prove that $\triangle A_2B_2C_2$ and $\triangle ABC$ are similar. [i]Fedir Yudin [/i]

2024 Bangladesh Mathematical Olympiad, P9

Let $ABC$ be a triangle and $M$ be the midpoint of side $BC$. The perpendicular bisector of $BC$ intersects the circumcircle of $\triangle ABC$ at points $K$ and $L$ ($K$ and $A$ lie on the opposite sides of $BC$). A circle passing through $L$ and $M$ intersects $AK$ at points $P$ and $Q$ ($P$ lies on the line segment $AQ$). $LQ$ intersects the circumcircle of $\triangle KMQ$ again at $R$. Prove that $BPCR$ is a cyclic quadrilateral.

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

2005 IMO, 5

Let $ABCD$ be a fixed convex quadrilateral with $BC=DA$ and $BC$ not parallel with $DA$. Let two variable points $E$ and $F$ lie of the sides $BC$ and $DA$, respectively and satisfy $BE=DF$. The lines $AC$ and $BD$ meet at $P$, the lines $BD$ and $EF$ meet at $Q$, the lines $EF$ and $AC$ meet at $R$. Prove that the circumcircles of the triangles $PQR$, as $E$ and $F$ vary, have a common point other than $P$.

2004 Bulgaria Team Selection Test, 1

The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.

2006 India IMO Training Camp, 2

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2010 ELMO Problems, 3

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2015 AIME Problems, 4

Point $B$ lies on line segment $\overline{AC}$ with $AB=16$ and $BC=4$. Points $D$ and $E$ lie on the same side of line $AC$ forming equilateral triangles $\triangle ABD$ and $\triangle BCE$. Let $M$ be the midpoint of $\overline{AE}$, and $N$ be the midpoint of $\overline{CD}$. The area of $\triangle BMN$ is $x$. Find $x^2$.

2015 Romania Team Selection Tests, 1

Let $ABC$ be a triangle. Let $P_1$ and $P_2$ be points on the side $AB$ such that $P_2$ lies on the segment $BP_1$ and $AP_1 = BP_2$; similarly, let $Q_1$ and $Q_2$ be points on the side $BC$ such that $Q_2$ lies on the segment $BQ_1$ and $BQ_1 = CQ_2$. The segments $P_1Q_2$ and $P_2Q_1$ meet at $R$, and the circles $P_1P_2R$ and $Q_1Q_2R$ meet again at $S$, situated inside triangle $P_1Q_1R$. Finally, let $M$ be the midpoint of the side $AC$. Prove that the angles $P_1RS$ and $Q_1RM$ are equal.

2022 Iran MO (3rd Round), 3

The point $M$ is the middle of the side $BC$ of the acute-angled triangle $ABC$ and the points $E$ and $F$ are respectively perpendicular foot of $M$ to the sides $AC$ and $AB$. The points $X$ and $Y$ lie on the plane such that $\triangle XEC\sim\triangle CEY$ and $\triangle BYF\sim\triangle XBF$(The vertices of triangles with this order are corresponded in the similarities) and the points $E$ and $F$ [u]don't[/u][neither] lie on the line $XY$. Prove that $XY\perp AM$.

2006 USAMO, 6

Let $ABCD$ be a quadrilateral, and let $E$ and $F$ be points on sides $AD$ and $BC$, respectively, such that $\frac{AE}{ED} = \frac{BF}{FC}$. Ray $FE$ meets rays $BA$ and $CD$ at $S$ and $T$, respectively. Prove that the circumcircles of triangles $SAE$, $SBF$, $TCF$, and $TDE$ pass through a common point.

2024 Thailand October Camp, 3

Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).

2010 ELMO Shortlist, 4

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2018 AIME Problems, 13

Let \(\triangle ABC\) have side lengths \(AB=30\), \(BC=32\), and \(AC=34\). Point \(X\) lies in the interior of \(\overline{BC}\), and points \(I_1\) and \(I_2\) are the incenters of \(\triangle ABX\) and \(\triangle ACX\), respectively. Find the minimum possible area of \(\triangle AI_1I_2\) as \( X\) varies along \(\overline{BC}\).

2005 IMO Shortlist, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2007 Germany Team Selection Test, 3

Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.

2014 JBMO Shortlist, 2

Acute-angled triangle ${ABC}$ with ${AB<AC<BC}$ and let be ${c(O,R)}$ it’s circumcircle. Diameters ${BD}$ and ${CE}$ are drawn. Circle ${c_1(A,AE)}$ interescts ${AC}$ at ${K}$. Circle ${{c}_{2}(A,AD)}$ intersects ${BA}$ at ${L}$ .(${A}$ lies between ${B}$ and ${L}$). Prove that lines ${EK}$ and ${DL}$ intersect at circle $c$ . by Evangelos Psychas (Greece)

2008 USA Team Selection Test, 7

Let $ ABC$ be a triangle with $ G$ as its centroid. Let $ P$ be a variable point on segment $ BC$. Points $ Q$ and $ R$ lie on sides $ AC$ and $ AB$ respectively, such that $ PQ \parallel AB$ and $ PR \parallel AC$. Prove that, as $ P$ varies along segment $ BC$, the circumcircle of triangle $ AQR$ passes through a fixed point $ X$ such that $ \angle BAG = \angle CAX$.