This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

2021 Polish Junior MO Second Round, 2

Given is the square $ABCD$. Point $E$ lies on the diagonal $AC$, where $AE> EC$. On the side $AB$, a different point from $B$ has been selected for which $EF = DE$. Prove that $\angle DEF = 90^o$.

Kyiv City MO Seniors Round2 2010+ geometry, 2016.10.2

On the horizontal line from left to right are the points $P, \, \, Q, \, \, R, \, \, S$. Construct a square $ABCD$, for which on the line $AD$ lies lies the point $P$, on the line $BC$ lies the point $Q$, on the line $AB$ lies the point $R$, on the line $CD$ lies the point $S $.

1993 Chile National Olympiad, 1

There are four houses, located on the vertices of a square. You want to draw a road network, so that you can go from any house to any other. Prove that the network formed by the diagonals is not the shortest. Find a shorter network.

2021 Brazil National Olympiad, 5

Find all triples of non-negative integers \((a, b, c)\) such that \[a^{2}+b^{2}+c^{2} = a b c+1.\]

2020 BMT Fall, 8

Tags: square , area , geometry
Let $ABCD$ be a unit square and let $E$ and $F$ be points inside $ABCD$ such that the line containing $\overline{EF}$ is parallel to $\overline{AB}$. Point $E$ is closer to $\overline{AD}$ than point $F$ is to $\overline{AD}$. The line containing $\overline{EF}$ also bisects the square into two rectangles of equal area. Suppose $[AEF B] = [DEFC] = 2[AED] = 2[BFC]$. The length of segment $\overline{EF}$ can be expressed as $m/n$ , where m and $n$ are relatively prime positive integers. Compute $m + n$.

1961 Czech and Slovak Olympiad III A, 2

Let a right isosceles triangle $APQ$ with the hypotenuse $AP$ be given in plane. Construct such a square $ABCD$ that the lines $BC, CD$ contain points $P, Q,$ respectively. Compute the length of side $AB = b$ in terms of $AQ=a$.

2010 Oral Moscow Geometry Olympiad, 5

Points $K$ and $M$ are taken on the sides $AB$ and $CD$ of square $ABCD$, respectively, and on the diagonal $AC$ - point $L$ such that $ML = KL$. Let $P$ be the intersection point of the segments $MK$ and $BD$. Find the angle $\angle KPL$.

2011 Junior Balkan Team Selection Tests - Romania, 2

We consider an $n \times n$ ($n \in N, n \ge 2$) square divided into $n^2$ unit squares. Determine all the values of $k \in N$ for which we can write a real number in each of the unit squares such that the sum of the $n^2$ numbers is a positive number, while the sum of the numbers from the unit squares of any $k \times k$ square is a negative number.

2012 Singapore Senior Math Olympiad, 2

Determine all positive integers $n$ such that $n$ equals the square of the sum of the digits of $n$.

2022 Novosibirsk Oral Olympiad in Geometry, 1

Tags: geometry , square
Cut a square with three straight lines into three triangles and four quadrilaterals.

1982 Spain Mathematical Olympiad, 5

Construct a square knowing the sum of the diagonal and the side.

1985 IMO Shortlist, 15

Let $K$ and $K'$ be two squares in the same plane, their sides of equal length. Is it possible to decompose $K$ into a finite number of triangles $T_1, T_2, \ldots, T_p$ with mutually disjoint interiors and find translations $t_1, t_2, \ldots, t_p$ such that \[K'=\bigcup_{i=1}^{p} t_i(T_i) \ ? \]

2005 Tournament of Towns, 4

$M$ and $N$ are the midpoints of sides $BC$ and $AD$, respectively, of a square $ABCD$. $K$ is an arbitrary point on the extension of the diagonal $AC$ beyond $A$. The segment $KM$ intersects the side $AB$ at some point $L$. Prove that $\angle KNA = \angle LNA$. [i](5 points)[/i]

Kyiv City MO Juniors Round2 2010+ geometry, 2013.7.3

In the square $ABCD$ on the sides $AD$ and $DC$, the points $M$ and $N$ are selected so that $\angle BMA = \angle NMD = 60 { } ^ \circ $. Find the value of the angle $MBN$.

1950 Polish MO Finals, 4

Someone wants to unscrew a square nut with side $a$, with a wrench whose hole has the form of a regular hexagon with side $b$. What condition should the lengths $a$ and $b$ meet to make this possible?

Russian TST 2015, P1

Tags: geometry , square
The points $A', B', C', D'$ are selected respectively on the sides $AB, BC, CD, DA$ of the cyclic quadrilateral $ABCD$. It is known that $AA' = BB' = CC' = DD'$ and \[\angle AA'D' =\angle BB'A' =\angle CC'B' =\angle DD'C'.\]Prove that $ABCD$ is a square.

1998 Denmark MO - Mohr Contest, 3

The points lie on three parallel lines with distances as indicated in the figure $A, B$ and $C$ such that square $ABCD$ is a square. Find the area of this square. [img]https://1.bp.blogspot.com/-xeFvahqPVyM/XzcFfB0-NfI/AAAAAAAAMYA/SV2XU59uBpo_K99ZBY43KSSOKe-veOdFQCLcBGAsYHQ/s0/1998%2BMohr%2Bp3.png[/img]

2015 Estonia Team Selection Test, 2

A square-shaped pizza with side length $30$ cm is cut into pieces (not necessarily rectangular). All cuts are parallel to the sides, and the total length of the cuts is $240$ cm. Show that there is a piece whose area is at least $36$ cm$^2$

1977 All Soviet Union Mathematical Olympiad, 249

Given $1000$ squares on the plane with their sides parallel to the coordinate axes. Let $M$ be the set of those squares centres. Prove that you can mark some squares in such a way, that every point of $M$ will be contained not less than in one and not more than in four marked squares

2018 Yasinsky Geometry Olympiad, 1

Points $A, B$ and $C$ lie on the same line so that $CA = AB$. Square $ABDE$ and the equilateral triangle $CFA$, are constructed on the same side of line $CB$. Find the acute angle between straight lines $CE$ and $BF$.

Novosibirsk Oral Geo Oly IX, 2020.4

Points $E$ and $F$ are the midpoints of sides $BC$ and $CD$ of square $ABCD$, respectively. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

Novosibirsk Oral Geo Oly VII, 2022.1

Tags: geometry , square
Cut a square with three straight lines into three triangles and four quadrilaterals.

Estonia Open Junior - geometry, 2007.2.2

The center of square $ABCD$ is $K$. The point $P$ is chosen such that $P \ne K$ and the angle $\angle APB$ is right . Prove that the line $PK$ bisects the angle between the lines $AP$ and $BP$.

2000 Romania National Olympiad, 4

In the square $ABCD$ we consider $ E \in (AB)$, $ F \in (AD)$ and $EF \cap AC = \{P\}$. Show that: a) $\frac{1}{AE} + \frac{1}{AF} = \frac{\sqrt2}{AP}$ b) $AP^2 \le \frac{AE \cdot AF}{2}$

2018 Puerto Rico Team Selection Test, 5

Tags: geometry , square
In the square shown in the figure, find the value of $x$. [img]https://cdn.artofproblemsolving.com/attachments/0/1/4659d5afa5b409d9264924735297d1188b0be3.png[/img]