This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 124

2014 Singapore Junior Math Olympiad, 5

In an $8 \times 8$ grid, $n$ disks, numbered $1$ to $n$ are stacked, with random order, in a pile in the bottom left comer. The disks can be moved one at a time to a neighbouring cell either to the right or top. The aim to move all the disks to the cell at the top right comer and stack them in the order $1,2,...,n$ from the bottom. Each cell, except the bottom left and top right cell, can have at most one disk at any given time. Find the largest value of $n$ so that the aim can be achieved.

2020 Thailand TSTST, 4

A $1\times 2019$ board is filled with numbers $1, 2, \dots, 2019$ in an increasing order. In each step, three consecutive tiles are selected, then one of the following operations is performed: $\text{(i)}$ the number in the middle is increased by $2$ and its neighbors are decreased by $1$, or $\text{(ii)}$ the number in the middle is decreased by $2$ and its neighbors are increased by $1$. After several such operations, the board again contains all the numbers $1, 2,\dots, 2019$. Prove that each number is in its original position.

2015 Abels Math Contest (Norwegian MO) Final, 2a

King Arthur is placing $a + b + c$ knights around a table. $a$ knights are dressed in red, $b$ knights are dressed in brown, and $c$ knights are dressed in orange. Arthur wishes to arrange the knights so that no knight is seated next to someone dressed in the same colour as himself. Show that this is possible if, and only if, there exists a triangle whose sides have lengths $a +\frac12, b +\frac12$, and $c +\frac12$

2021 Thailand TST, 1

For a positive integer $n$, consider a square cake which is divided into $n \times n$ pieces with at most one strawberry on each piece. We say that such a cake is [i]delicious[/i] if both diagonals are fully occupied, and each row and each column has an odd number of strawberries. Find all positive integers $n$ such that there is an $n \times n$ delicious cake with exactly $\left\lceil\frac{n^2}{2}\right\rceil$ strawberries on it.

2024 Iran MO (3rd Round), 2

Two intelligent people playing a game on the $1403 \times 1403$ table with $1403^2$ cells. The first one in each turn chooses a cell that didn't select before and draws a vertical line segment from the top to the bottom of the cell. The second person in each turn chooses a cell that didn't select before and draws a horizontal line segment from the left to the right of the cell. After $1403^2$ steps the game will be over. The first person gets points equal to the longest verticals line segment and analogously the second person gets point equal to the longest horizonal line segment. At the end the person who gets the more point will win the game. What will be the result of the game?

2025 Bulgarian Spring Mathematical Competition, 10.3

In the cell $(i,j)$ of a table $n\times n$ is written the number $(i-1)n + j$. Determine all positive integers $n$ such that there are exactly $2025$ rows not containing a perfect square.

1992 All Soviet Union Mathematical Olympiad, 572

Half the cells of a $2m \times n$ board are colored black and the other half are colored white. The cells at the opposite ends of the main diagonal are different colors. The center of each black cell is connected to the center of every other black cell by a straight line segment, and similarly for the white cells. Show that we can place an arrow on each segment so that it becomes a vector and the vectors sum to zero.

2015 JBMO Shortlist, C1

A board $ n \times n$ ($n \ge 3$) is divided into $n^2$ unit squares. Integers from $O$ to $n$ included, are written down: one integer in each unit square, in such a way that the sums of integers in each $2\times 2$ square of the board are different. Find all $n$ for which such boards exist.

2007 Estonia National Olympiad, 4

The figure shows a figure of $5$ unit squares, a Greek cross. What is the largest number of Greek crosses that can be placed on a grid of dimensions $8 \times 8$ without any overlaps, with each unit square covering just one square in a grid?

1986 All Soviet Union Mathematical Olympiad, 423

Prove that the rectangle $m\times n$ table can be filled with exact squares so, that the sums in the rows and the sums in the columns will be exact squares also.

2014 Grand Duchy of Lithuania, 3

In a table $n\times n$ some unit squares are coloured black and the other unit squares are coloured white. For each pair of columns and each pair of rows the four squares on the intersections of these rows and columns must not all be of the same colour. What is the largest possible value of $n$?

2001 Saint Petersburg Mathematical Olympiad, 10.4

Rectangles $1\times20$, $1\times 19$, ..., $1\times 1$ were cut out of $20\times20$ table. Prove that from the remaining part of the table $36$ $1\times2$ dominos can be cut [I]Proposed by S. Berlov[/i]

2020 Tournament Of Towns, 7

Consider an infinite white plane divided into square cells. For which $k$ it is possible to paint a positive finite number of cells black so that on each horizontal, vertical and diagonal line of cells there is either exactly $k$ black cells or none at all? A. Dinev, K. Garov, N Belukhov

2014 IFYM, Sozopol, 8

We will call a rectangular table filled with natural numbers [i]“good”[/i], if for each two rows, there exist a column for which its two cells that are also in these two rows, contain numbers of different parity. Prove that for $\forall$ $n>2$ we can erase a column from a [i]good[/i] $n$ x $n$ table so that the remaining $n$ x $(n-1)$ table is also [i]good[/i].

2015 IFYM, Sozopol, 7

A corner with arm $n$ is a figure made of $2n-1$ unit squares, such that 2 rectangles $1$ x $(n-1)$ are connected to two adjacent sides of a square $1$ x $1$, so that their unit sides coincide. The squares or a chessboard $100$ x $100$ are colored in 15 colors. We say that a corner with arm 8 is [i]“multicolored”[/i], if it contains each of the colors on the board. What’s the greatest number of corners with arm 8 which could be [i]“mutlticolored”[/i]?

2015 IFYM, Sozopol, 4

A plane is cut into unit squares, which are then colored in $n$ colors. A polygon $P$ is created from $n$ unit squares that are connected by their sides. It is known that any cell polygon created by $P$ with translation, covers $n$ unit squares in different colors. Prove that the plane can be covered with copies of $P$ so that each cell is covered exactly once.

2019 Vietnam National Olympiad, Day 2

There are some papers of the size $5\times 5$ with two sides which are divided into unit squares for both sides. One uses $n$ colors to paint each cell on the paper, one cell by one color, such that two cells on the same positions for two sides are painted by the same color. Two painted papers are consider as the same if the color of two corresponding cells are the same. Prove that there are no more than $$\frac{1}{8}\left( {{n}^{25}}+4{{n}^{15}}+{{n}^{13}}+2{{n}^{7}} \right)$$ pairwise distinct papers that painted by this way.

1980 Tournament Of Towns, (002) 2

In a $N \times N$ array of numbers, all rows are different (two rows are said to be different even if they differ only in one entry). Prove that there is a column which can be deleted in such a way that the resulting rows will still be different. (A Andjans, Riga)

2020 Tournament Of Towns, 4

For which integers $N$ it is possible to write real numbers into the cells of a square of size $N \times N$ so that among the sums of each pair of adjacent cells there are all integers from $1$ to $2(N-1)N$ (each integer once)? Maxim Didin

ICMC 5, 2

Find all integers $n$ for which there exists a table with $n$ rows, $2022$ columns, and integer entries, such that subtracting any two rows entry-wise leaves every remainder modulo $2022$. [i]Proposed by Tony Wang[/i]

2021 Abels Math Contest (Norwegian MO) Final, 1a

A $3n$-table is a table with three rows and $n$ columns containing all the numbers $1, 2, …, 3n$. Such a table is called [i]tidy [/i] if the $n$ numbers in the first row appear in ascending order from left to right, and the three numbers in each column appear in ascending order from top to bottom. How many tidy $3n$-tables exist?

2022 Kazakhstan National Olympiad, 6

Numbers from $1$ to $49$ are randomly placed in a $35 \times 35$ table such that number $i$ is used exactly $i$ times. Some random cells of the table are removed so that table falls apart into several connected (by sides) polygons. Among them, the one with the largest area is chosen (if there are several of the same largest areas, a random one of them is chosen). What is the largest number of cells that can be removed that guarantees that in the chosen polygon there is a number which occurs at least $15$ times?

1982 All Soviet Union Mathematical Olympiad, 345

Given the square table $n\times n$ with $(n-1)$ marked fields. Prove that it is possible to move all the marked fields below the diagonal by moving rows and columns.

2020 Dürer Math Competition (First Round), P2

Initially we have a $2 \times 2$ table with at least one grain of wheat on each cell. In each step we may perform one of the following two kinds of moves: $i.$ If there is at least one grain on every cell of a row, we can take away one grain from each cell in that row. $ii.$ We can double the number of grains on each cell of an arbitrary column. a) Show that it is possible to reach the empty table using the above moves, starting from the position down below. b) Show that it is possible to reach the empty table from any starting position. c) Prove that the same is true for the $8 \times 8$ tables as well.

2016 239 Open Mathematical Olympiad, 8

Given a natural number $k>1$. Find the smallest number $\alpha$ satisfying the following condition. Suppose that the table $(2k + 1) \times (2k + 1)$ is filled with real numbers not exceeding $1$ in absolute value, and the sums of the numbers in all lines are equal to zero. Then you can rearrange the numbers so that each number remains in its row and all the sums over the columns will be at most $\alpha$.