This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2007 Macedonia National Olympiad, 2

In a trapezoid $ABCD$ with a base $AD$, point $L$ is the orthogonal projection of $C$ on $AB$, and $K$ is the point on $BC$ such that $AK$ is perpendicular to $AD$. Let $O$ be the circumcenter of triangle $ACD$. Suppose that the lines $AK , CL$ and $DO$ have a common point. Prove that $ABCD$ is a parallelogram.

2022 Mexican Girls' Contest, 8

Let $n$ be a positive integer. Consider a figure of a equilateral triangle of side $n$ and splitted in $n^2$ small equilateral triangles of side $1$. One will mark some of the $1+2+\dots+(n+1)$ vertices of the small triangles, such that for every integer $k\geq 1$, there is [b]not[/b] any trapezoid(trapezium), whose the sides are $(1,k,1,k+1)$, with all the vertices marked. Furthermore, there are [b]no[/b] small triangle(side $1$) have your three vertices marked. Determine the greatest quantity of marked vertices.

2012 Belarus Team Selection Test, 2

Two distinct points $A$ and $B$ are marked on the left half of the parabola $y = x^2$. Consider any pair of parallel lines which pass through $A$ and $B$ and intersect the right half of the parabola at points $C$ and $D$. Let $K$ be the intersection point of the diagonals $AC$ and $BD$ of the obtained trapezoid $ABCD$. Let $M, N$ be the midpoints of the bases of $ABCD$. Prove that the difference $KM - KN$ depends only on the choice of points $A$ and $B$ but does not depend on the pair of parallel lines described above. (I. Voronovich)

OIFMAT III 2013, 8

$ABCD$ is a trapezoid with $AB$ parallel to $CD$. The external bisectors of the angles at $ B$ and $C$ intersect at $ P$. The external bisectors of the angles at $ A$ and $D$ intersect at $Q$. Show that the length of $PQ$ is equal to half the perimeter of the trapezoid $ABCD$.

2023 AMC 12/AHSME, 11

Tags: trapezoid , geometry , area
What is the maximum area of an isosceles trapezoid that has legs of length $1$ and one base twice as long as the other? $ \textbf{(A) }\frac 54 \qquad \textbf{(B) } \frac 87 \qquad \textbf{(C)} \frac{5\sqrt2}4 \qquad \textbf{(D) } \frac 32 \qquad \textbf{(E) } \frac{3\sqrt3}4 $

2020 BAMO, A

A trapezoid is divided into seven strips of equal width as shown. What fraction of the trapezoid’s area is shaded?

2012 Korea National Olympiad, 1

Let $ ABC $ be an obtuse triangle with $ \angle A > 90^{\circ} $. Let circle $ O $ be the circumcircle of $ ABC $. $ D $ is a point lying on segment $ AB $ such that $ AD = AC $. Let $ AK $ be the diameter of circle $ O $. Two lines $ AK $ and $ CD $ meet at $ L $. A circle passing through $ D, K, L $ meets with circle $ O $ at $ P ( \ne K ) $ . Given that $ AK = 2, \angle BCD = \angle BAP = 10^{\circ} $, prove that $ DP = \sin ( \frac{ \angle A}{2} )$.

2006 JBMO ShortLists, 9

Let $ ABCD$ be a trapezoid with $ AB\parallel CD,AB>CD$ and $ \angle{A} \plus{} \angle{B} \equal{} 90^\circ$. Prove that the distance between the midpoints of the bases is equal to the semidifference of the bases.

2011 Turkey MO (2nd round), 5

Let $M$ and $N$ be two regular polygonic area.Define $K(M,N)$ as the midpoints of segments $[AB]$ such that $A$ belong to $M$ and $B$ belong to $N$. Find all situations of $M$ and $N$ such that $K(M,N)$ is a regualr polygonic area too.

2012 Online Math Open Problems, 19

In trapezoid $ABCD$, $AB < CD$, $AB\perp BC$, $AB\parallel CD$, and the diagonals $AC$, $BD$ are perpendicular at point $P$. There is a point $Q$ on ray $CA$ past $A$ such that $QD\perp DC$. If \[\frac{QP} {AP}+\frac{AP} {QP} = \left( \frac{51}{14}\right)^4 - 2,\]then $\frac{BP} {AP}-\frac{AP}{BP}$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m,n$. Compute $m+n$. [i]Ray Li.[/i]

1994 Polish MO Finals, 2

Let be given two parallel lines $k$ and $l$, and a circle not intersecting $k$. Consider a variable point $A$ on the line $k$. The two tangents from this point $A$ to the circle intersect the line $l$ at $B$ and $C$. Let $m$ be the line through the point $A$ and the midpoint of the segment $BC$. Prove that all the lines $m$ (as $A$ varies) have a common point.

2005 Postal Coaching, 16

The diagonals AC and BD of a cyclic ABCD intersect at E. Let O be circumcentre of ABCD. If midpoints of AB, CD, OE are collinear prove that AD=BC. Bomb [color=red][Moderator edit: The problem is wrong. See also http://www.mathlinks.ro/Forum/viewtopic.php?t=53090 .][/color]

2010 Indonesia TST, 1

Let $ ABCD$ be a trapezoid such that $ AB \parallel CD$ and assume that there are points $ E$ on the line outside the segment $ BC$ and $ F$ on the segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Let $ I,J,K$ respectively be the intersection of line $ EF$ and line $ CD$, the intersection of line $ EF$ and line $ AB$, and the midpoint of segment $ EF$. Prove that $ K$ is on the circumcircle of triangle $ CDJ$ if and only if $ I$ is on the circumcircle of triangle $ ABK$. [i]Utari Wijayanti, Bandung[/i]

2018 AIME Problems, 7

Triangle $ABC$ has sides $AB=9,BC = 5\sqrt{3},$ and $AC=12$. Points $A=P_0, P_1, P_2, \dots, P_{2450} = B$ are on segment $\overline{AB}$ with $P_k$ between $P_{k-1}$ and $P_{k+1}$ for $k=1,2,\dots,2449$, and points $A=Q_0, Q_1, Q_2, \dots ,Q_{2450} = C$ for $k=1,2,\dots,2449$. Furthermore, each segment $\overline{P_kQ_k}, k=1,2,\dots,2449$, is parallel to $\overline{BC}$. The segments cut the triangle into $2450$ regions, consisting of $2449$ trapezoids and $1$ triangle. Each of the $2450$ regions have the same area. Find the number of segments $\overline{P_kQ_k}, k=1,2 ,\dots,2450$, that have rational length.

2013 Sharygin Geometry Olympiad, 6

Diagonals $AC$ and $BD$ of a trapezoid $ABCD$ meet at $P$. The circumcircles of triangles $ABP$ and $CDP$ intersect the line $AD$ for the second time at points $X$ and $Y$ respectively. Let $M$ be the midpoint of segment $XY$. Prove that $BM = CM$.

2009 Sharygin Geometry Olympiad, 11

Given quadrilateral $ ABCD$. The circumcircle of $ ABC$ is tangent to side $ CD$, and the circumcircle of $ ACD$ is tangent to side $ AB$. Prove that the length of diagonal $ AC$ is less than the distance between the midpoints of $ AB$ and $ CD$.

2000 National Olympiad First Round, 9

$ABCDE$ is convex pentagon. $m(\widehat{B})=m(\widehat{D})=90^\circ$, $m(\widehat{C})=120^\circ$, $|AB|=2$, $|BC|=|CD|=\sqrt3$, and $|ED|=1$. $|AE|=?$ $ \textbf{(A)}\ \frac{3\sqrt3}{2} \qquad\textbf{(B)}\ \frac{2\sqrt3}{3} \qquad\textbf{(C)}\ \frac{3}{2} \qquad\textbf{(D)}\ \sqrt3 - 1 \qquad\textbf{(E)}\ \sqrt3 $

1994 China Team Selection Test, 3

Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular $n$-gon are colored red, there exists a line of symmetry $l$ of the $n$-gon such that every red point is reflected across $l$ to a non-red point.

2018 Polish Junior MO Second Round, 4

Let $ABCD$ be a trapezoid with bases $AB$ and $CD$. Points $P$ and $Q$ lie on diagonals $AC$ and $BD$, respectively and $\angle APD = \angle BQC$. Prove that $\angle AQD = \angle BPC$.

1998 Romania Team Selection Test, 1

We are given an isosceles triangle $ABC$ such that $BC=a$ and $AB=BC=b$. The variable points $M\in (AC)$ and $N\in (AB)$ satisfy $a^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM$. The straight lines $BM$ and $CN$ intersect in $P$. Find the locus of the variable point $P$. [i]Dan Branzei[/i]

2010 Contests, 3

Let $ K$ be the circumscribed circle of the trapezoid $ ABCD$ . In this trapezoid the diagonals $ AC$ and $ BD$ are perpendicular. The parallel sides $ AB\equal{}a$ and $ CD\equal{}c$ are diameters of the circles $ K_{a}$ and $ K_{b}$ respectively. Find the perimeter and the area of the part inside the circle $ K$, that is outside circles $ K_{a}$ and $ K_{b}$.

2009 Spain Mathematical Olympiad, 6

Inside a circle of center $ O$ and radius $ r$, take two points $ A$ and $ B$ symmetrical about $ O$. We consider a variable point $ P$ on the circle and draw the chord $ \overline{PP'}\perp \overline{AP}$. Let $ C$ is the symmetric of $ B$ about $ \overline{PP'}$ ($ \overline{PP}'$ is the axis of symmetry) . Find the locus of point $ Q \equal{} \overline{PP'}\cap\overline{AC}$ when we change $ P$ in the circle.

2023 Junior Balkan Team Selection Tests - Moldova, 8

Let $ABCD$ be a trapezoid with bases $ AB$ and $CD$ $(AB>CD)$. Diagonals $AC$ and $BD$ intersect in point $ N$ and lines $AD$ and $BC$ intersect in point $ M$. The circumscribed circles of $ADN$ and $BCN$ intersect in point $ P$, different from point $ N$. Prove that the angles $AMP$ and $BMN$ are equal.

1957 Moscow Mathematical Olympiad, 346

Find all isosceles trapezoids that are divided into $2$ isosceles triangles by a diagonal.

2016 Hanoi Open Mathematics Competitions, 12

In the trapezoid $ABCD, AB // CD$ and the diagonals intersect at $O$. The points $P, Q$ are on $AD, BC$ respectively such that $\angle AP B = \angle CP D$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.