This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 239

2012 AIME Problems, 13

Equilateral $\triangle ABC$ has side length $\sqrt{111}$. There are four distinct triangles $AD_1E_1$, $AD_1E_2$, $AD_2E_3$, and $AD_2E_4$, each congruent to $\triangle ABC$, with $BD_1 = BD_2=\sqrt{11}$. Find $\sum^4_{k=1}(CE_k)^2$.

2013 AIME Problems, 13

Triangle $AB_0C_0$ has side lengths $AB_0 = 12$, $B_0C_0 = 17$, and $C_0A = 25$. For each positive integer $n$, points $B_n$ and $C_n$ are located on $\overline{AB_{n-1}}$ and $\overline{AC_{n-1}}$, respectively, creating three similar triangles $\triangle AB_nC_n \sim \triangle B_{n-1}C_nC_{n-1} \sim \triangle AB_{n-1}C_{n-1}$. The area of the union of all triangles $B_{n-1}C_nB_n$ for $n\geq1$ can be expressed as $\tfrac pq$, where $p$ and $q$ are relatively prime positive integers. Find $q$.

2002 National Olympiad First Round, 25

Let $E$ be a point on side $[AD]$ of rhombus $ABCD$. Lines $AB$ and $CE$ meet at $F$, lines $BE$ and $DF$ meet at $G$. If $m(\widehat{DAB}) = 60^\circ $, what is$m(\widehat{DGB})$? $ \textbf{a)}\ 45^\circ \qquad\textbf{b)}\ 50^\circ \qquad\textbf{c)}\ 60^\circ \qquad\textbf{d)}\ 65^\circ \qquad\textbf{e)}\ 75^\circ $

2010 Argentina Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

1966 AMC 12/AHSME, 6

$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is: $\text{(A)} \ 3 \qquad \text{(B)} \ \frac{5\sqrt{2}}{2} \qquad \text{(C)} \frac{5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$

2002 Junior Balkan MO, 1

The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.

1997 Junior Balkan MO, 4

Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$. [i]Romania[/i]

2011 AIME Problems, 13

Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP>CP$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB=12$ and $\angle O_1 P O_2 = 120^\circ$, then $AP=\sqrt{a}+\sqrt{b}$ where $a$ and $b$ are positive integers. Find $a+b$.

1998 USAMTS Problems, 5

In $\triangle A B C$, let $D, E$, and $F$ be the midpoints of the sides of the triangle, and let $P, Q,$ and $R$ be the midpoints of the corresponding medians, $AD ,B E,$ and $C F$, respectively, as shown in the figure at the right. Prove that the value of \[\frac{AQ^2 + A R^2 + B P^2 + B R^2 + C P^2+ C Q^2 }{A B^2 + B C^2 + C A^2}\] does not depend on the shape of $\triangle A B C$ and find that value. [asy] defaultpen(linewidth(0.7)+fontsize(10));size(200); pair A=origin, B=(14,0), C=(9,12), D=midpoint(C--B), E=midpoint(C--A), F=midpoint(A--B), R=midpoint(C--F), P=midpoint(D--A), Q=midpoint(E--B); draw(A--B--C--A, linewidth(1)); draw(A--D^^B--E^^C--F); draw(B--R--A--Q--C--P--cycle, dashed); pair point=centroid(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$P$", P, dir(40)*dir(point--P)); label("$Q$", Q, dir(40)*dir(point--Q)); label("$R$", R, dir(40)*dir(point--R)); dot(P^^Q^^R);[/asy]

2011 NIMO Summer Contest, 14

In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$. [i]Proposed by Eugene Chen [/i]

1963 IMO, 5

Prove that $\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}$

2004 China Team Selection Test, 2

Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.

2003 Iran MO (3rd Round), 26

Circles $ C_1,C_2$ intersect at $ P$. A line $ \Delta$ is drawn arbitrarily from $ P$ and intersects with $ C_1,C_2$ at $ B,C$. What is locus of $ A$ such that the median of $ AM$ of triangle $ ABC$ has fixed length $ k$.

1982 AMC 12/AHSME, 18

In the adjoining figure of a rectangular solid, $\angle DHG=45^\circ$ and $\angle FHB=60^\circ$. Find the cosine of $\angle BHD$. [asy] size(200); import three;defaultpen(linewidth(0.7)+fontsize(10)); currentprojection=orthographic(1/3+1/10,1-1/10,1/3); real r=sqrt(3); triple A=(0,0,r), B=(0,r,r), C=(1,r,r), D=(1,0,r), E=O, F=(0,r,0), G=(1,0,0), H=(1,r,0); draw(D--G--H--D--A--B--C--D--B--F--H--B^^C--H); draw(A--E^^G--E^^F--E, linetype("4 4")); label("$A$", A, N); label("$B$", B, dir(0)); label("$C$", C, N); label("$D$", D, W); label("$E$", E, NW); label("$F$", F, S); label("$G$", G, W); label("$H$", H, S); triple H45=(1,r-0.15,0.1), H60=(1-0.05, r, 0.07); label("$45^\circ$", H45, dir(125), fontsize(8)); label("$60^\circ$", H60, dir(25), fontsize(8));[/asy] $\textbf {(A) } \frac{\sqrt{3}}{6} \qquad \textbf {(B) } \frac{\sqrt{2}}{6} \qquad \textbf {(C) } \frac{\sqrt{6}}{3} \qquad \textbf {(D) } \frac{\sqrt{6}}{4} \qquad \textbf {(E) } \frac{\sqrt{6}-\sqrt{2}}{4}$

2010 AMC 12/AHSME, 17

Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$? $ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad \textbf{(B)}\ \frac {10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {17}{4} \qquad \textbf{(E)}\ 6$

2014 Mediterranean Mathematics Olympiad, 4

In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$. Prove that $P$, $Q$ and $R$ are collinear.

2008 Harvard-MIT Mathematics Tournament, 6

Let $ ABC$ be a triangle with $ \angle A \equal{} 45^\circ$. Let $ P$ be a point on side $ BC$ with $ PB \equal{} 3$ and $ PC \equal{} 5$. Let $ O$ be the circumcenter of $ ABC$. Determine the length $ OP$.

1998 AMC 12/AHSME, 26

In quadrilateral $ ABCD$, it is given that $ \angle A \equal{} 120^\circ$, angles $ B$ and $ D$ are right angles, $ AB \equal{} 13$, and $ AD \equal{} 46$. Then $ AC \equal{}$ $ \textbf{(A)}\ 60 \qquad \textbf{(B)}\ 62 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 65 \qquad \textbf{(E)}\ 72$

2014 China Western Mathematical Olympiad, 2

Let $ AB$ be the diameter of semicircle $O$ , $C, D $ be points on the arc $AB$, $P, Q$ be respectively the circumcenter of $\triangle OAC $ and $\triangle OBD $ . Prove that:$CP\cdot CQ=DP \cdot DQ$.[asy] import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black; real h=sqrt(55/64); pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B); D(arc(O,1,0,180),darkgreen); D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue); D(O); [/asy]

2001 National Olympiad First Round, 33

Let $ABC$ be a triangle such that $|AC|=1$ and $|AB|=\sqrt 2$. Let $M$ be a point such that $|MA|=|AB|$, $m(\widehat{MAB}) = 90^\circ$, and $C$ and $M$ are on the opposite sides of $AB$. Let $N$ be a point such that $|NA|=|AX|$, $m(\widehat{NAC}) = 90^\circ$, and $B$ and $N$ are on the opposite sides of $AC$. If the line passing throung $A$ and the circumcenter of triangle $MAN$ meets $[BC]$ at $F$, what is $\dfrac {|BF|}{|FC|}$? $ \textbf{(A)}\ 2\sqrt 2 \qquad\textbf{(B)}\ 2\sqrt 3 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 3\sqrt 2 $

2009 AMC 12/AHSME, 13

A ship sails $ 10$ miles in a straight line from $ A$ to $ B$, turns through an angle between $ 45^{\circ}$ and $ 60^{\circ}$, and then sails another $ 20$ miles to $ C$. Let $ AC$ be measured in miles. Which of the following intervals contains $ AC^2$? [asy]unitsize(2mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair B=(0,0), A=(-10,0), C=20*dir(50); draw(A--B--C); draw(A--C,linetype("4 4")); dot(A); dot(B); dot(C); label("$10$",midpoint(A--B),S); label("$20$",midpoint(B--C),SE); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE);[/asy]$ \textbf{(A)}\ [400,500] \qquad \textbf{(B)}\ [500,600] \qquad \textbf{(C)}\ [600,700] \qquad \textbf{(D)}\ [700,800]$ $ \textbf{(E)}\ [800,900]$

1975 AMC 12/AHSME, 20

In the adjoining figure triangle $ ABC$ is such that $ AB \equal{} 4$ and $ AC \equal{} 8$. If $ M$ is the midpoint of $ BC$ and $ AM \equal{} 3$, what is the length of $ BC$? $ \textbf{(A)}\ 2\sqrt{26} \qquad \textbf{(B)}\ 2\sqrt{31} \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 4\plus{}2\sqrt{13} \qquad$ $ \textbf{(E)}\ \text{not enough information given to solve the problem}$ [asy]draw((0,0)--(2.8284,2)--(8,0)--cycle); draw((2.8284,2)--(4,0)); label("A",(2.8284,2),N); label("B",(0,0),S); label("C",(8,0),S); label("M",(4,0),S);[/asy]

2014 AMC 12/AHSME, 12

Two circles intersect at points $A$ and $B$. The minor arcs $AB$ measure $30^\circ$ on one circle and $60^\circ$ on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle? $\textbf{(A) }2\qquad \textbf{(B) }1+\sqrt3\qquad \textbf{(C) }3\qquad \textbf{(D) }2+\sqrt3\qquad \textbf{(E) }4\qquad$

2013 AMC 12/AHSME, 12

The angles in a particular triangle are in arithmetic progression, and the side lengths are $4,5,x$. The sum of the possible values of $x$ equals $a+\sqrt{b}+\sqrt{c}$ where $a, b$, and $c$ are positive integers. What is $a+b+c$? $ \textbf{(A)}\ 36\qquad\textbf{(B)}\ 38\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 44$

2012 Online Math Open Problems, 23

Let $ABC$ be an equilateral triangle with side length $1$. This triangle is rotated by some angle about its center to form triangle $DEF.$ The intersection of $ABC$ and $DEF$ is an equilateral hexagon with an area that is $\frac{4} {5}$ the area of $ABC.$ The side length of this hexagon can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]Author: Ray Li[/i]