This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2008 Harvard-MIT Mathematics Tournament, 16

Point $ A$ lies at $ (0, 4)$ and point $ B$ lies at $ (3, 8)$. Find the $ x$-coordinate of the point $ X$ on the $ x$-axis maximizing $ \angle AXB$.

2009 India National Olympiad, 5

Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that: $AH \plus{} BH \plus{} CH\leq2h_{max}$

2009 Kyiv Mathematical Festival, 1

Solve the equation $\big(2cos(x-\frac{\pi}{4})+tgx\big)^3=54 sin^2x$, $x\in \big[0,\frac{\pi}{2}\big)$

2006 JBMO ShortLists, 1

For an acute triangle $ ABC$ prove the inequality: $ \sum_{cyclic} \frac{m_a^2}{\minus{}a^2\plus{}b^2\plus{}c^2}\ge \frac{9}{4}$ where $ m_a,m_b,m_c$ are lengths of corresponding medians.

2002 South africa National Olympiad, 5

In acute-angled triangle $ABC$, a semicircle with radius $r_a$ is constructed with its base on $BC$ and tangent to the other two sides. $r_b$ and $r_c$ are defined similarly. $r$ is the radius of the incircle of $ABC$. Show that \[ \frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}. \]

2011 NIMO Summer Contest, 14

In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$. [i]Proposed by Eugene Chen [/i]

2017 Bosnia Herzegovina Team Selection Test, 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2004 Harvard-MIT Mathematics Tournament, 10

Let $P(x)=x^3-\tfrac{3}{2}x^2+x+\tfrac{1}{4}$. Let $P^{[1]}(x)=P(x)$, and for $n\ge1$, let $P^{n+1}(x)=P^{[n]}(P(x))$. Evaluate: \[ \displaystyle\int_{0}^{1} P^{[2004]} (x) \ \mathrm{d}x. \]

2002 Kazakhstan National Olympiad, 2

Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality \[ \frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}. \]

2003 China Team Selection Test, 1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.

III Soros Olympiad 1996 - 97 (Russia), 10.1

Tags: trigonometry
It is known that $\cos 157^o = a$, where $a$ is given. Calculate $1^o$ in terms of $a$.

2007 India National Olympiad, 6

If $ x$, $ y$, $ z$ are positive real numbers, prove that \[ \left(x \plus{} y \plus{} z\right)^2 \left(yz \plus{} zx \plus{} xy\right)^2 \leq 3\left(y^2 \plus{} yz \plus{} z^2\right)\left(z^2 \plus{} zx \plus{} x^2\right)\left(x^2 \plus{} xy \plus{} y^2\right) .\]

2010 AMC 12/AHSME, 20

A geometric sequence $ (a_n)$ has $ a_1\equal{}\sin{x}, a_2\equal{}\cos{x},$ and $ a_3\equal{}\tan{x}$ for some real number $ x$. For what value of $ n$ does $ a_n\equal{}1\plus{}\cos{x}$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

2020 Candian MO, 2#

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

2004 Korea - Final Round, 2

An acute triangle $ABC$ has circumradius $R$, inradius $r$. $A$ is the biggest angle among $A,B,C$. Let $M$ be the midpoint of $BC$, and $X$ be the intersection of two lines that touches circumcircle of $ABC$ and goes through $B,C$ respectively. Prove the following inequality : $ \frac{r}{R} \geq \frac{AM}{AX}$.

2005 Serbia Team Selection Test, 1

Prove that there is n rational number $r$ such that $cosr\pi=\frac{3}{5}$

2012 Pre-Preparation Course Examination, 5

The $2^{nd}$ order differentiable function $f:\mathbb R \longrightarrow \mathbb R$ is in such a way that for every $x\in \mathbb R$ we have $f''(x)+f(x)=0$. [b]a)[/b] Prove that if in addition, $f(0)=f'(0)=0$, then $f\equiv 0$. [b]b)[/b] Use the previous part to show that there exist $a,b\in \mathbb R$ such that $f(x)=a\sin x+b\cos x$.

2007 Iran Team Selection Test, 2

Triangle $ABC$ is isosceles ($AB=AC$). From $A$, we draw a line $\ell$ parallel to $BC$. $P,Q$ are on perpendicular bisectors of $AB,AC$ such that $PQ\perp BC$. $M,N$ are points on $\ell$ such that angles $\angle APM$ and $\angle AQN$ are $\frac\pi2$. Prove that \[\frac{1}{AM}+\frac1{AN}\leq\frac2{AB}\]

MathLinks Contest 7th, 1.1

Given is an acute triangle $ ABC$ and the points $ A_1,B_1,C_1$, that are the feet of its altitudes from $ A,B,C$ respectively. A circle passes through $ A_1$ and $ B_1$ and touches the smaller arc $ AB$ of the circumcircle of $ ABC$ in point $ C_2$. Points $ A_2$ and $ B_2$ are defined analogously. Prove that the lines $ A_1A_2$, $ B_1B_2$, $ C_1C_2$ have a common point, which lies on the Euler line of $ ABC$.

1996 IberoAmerican, 3

There are $n$ different points $A_1, \ldots , A_n$ in the plain and each point $A_i$ it is assigned a real number $\lambda_i$ distinct from zero in such way that $(\overline{A_i A_j})^2 = \lambda_i + \lambda_j$ for all the $i$,$j$ with $i\neq{}j$} Show that: (1) $n \leq 4$ (2) If $n=4$, then $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}+ \frac{1}{\lambda_4} = 0$

1998 China Team Selection Test, 1

In acute-angled $\bigtriangleup ABC$, $H$ is the orthocenter, $O$ is the circumcenter and $I$ is the incenter. Given that $\angle C > \angle B > \angle A$, prove that $I$ lies within $\bigtriangleup BOH$.

1994 AIME Problems, 15

Given a point $P$ on a triangular piece of paper $ABC,$ consider the creases that are formed in the paper when $A, B,$ and $C$ are folded onto $P.$ Let us call $P$ a fold point of $\triangle ABC$ if these creases, which number three unless $P$ is one of the vertices, do not intersect. Suppose that $AB=36, AC=72,$ and $\angle B=90^\circ.$ Then the area of the set of all fold points of $\triangle ABC$ can be written in the form $q\pi-r\sqrt{s},$ where $q, r,$ and $s$ are positive integers and $s$ is not divisible by the square of any prime. What is $q+r+s$?

2007 India Regional Mathematical Olympiad, 1

Let $ ABC$ be an acute-angled triangle; $ AD$ be the bisector of $ \angle BAC$ with $ D$ on $ BC$; and $ BE$ be the altitude from $ B$ on $ AC$. Show that $ \angle CED > 45^\circ .$ [b][weightage 17/100][/b]

2010 Princeton University Math Competition, 8

The expression $\sin2^\circ\sin4^\circ\sin6^\circ\cdots\sin90^\circ$ is equal to $p\sqrt{5}/2^{50}$, where $p$ is an integer. Find $p$.

2002 India IMO Training Camp, 17

Let $n$ be a positive integer and let $(1+iT)^n=f(T)+ig(T)$ where $i$ is the square root of $-1$, and $f$ and $g$ are polynomials with real coefficients. Show that for any real number $k$ the equation $f(T)+kg(T)=0$ has only real roots.