Found problems: 3349
2010 Today's Calculation Of Integral, 635
Suppose that a function $f(x)$ defined in $-1<x<1$ satisfies the following properties (i) , (ii), (iii).
(i) $f'(x)$ is continuous.
(ii) When $-1<x<0,\ f'(x)<0,\ f'(0)=0$, when $0<x<1,\ f'(x)>0$.
(iii) $f(0)=-1$
Let $F(x)=\int_0^x \sqrt{1+\{f'(t)\}^2}dt\ (-1<x<1)$. If $F(\sin \theta)=c\theta\ (c :\text{constant})$ holds for $-\frac{\pi}{2}<\theta <\frac{\pi}{2}$, then find $f(x)$.
[i]1975 Waseda University entrance exam/Science and Technology[/i]
2004 Alexandru Myller, 3
Consider three real numbers $ x,y,z $ satisfying $ \cos x+\cos y+\cos z =\cos 3x +\cos 3y +\cos 3z=0. $
Show that $ \cos 2x\cdot \cos 2y\cdot\cos 2z\le 0. $
[i]Bogdan Enescu[/i]
2006 Italy TST, 2
Let $ABC$ be a triangle, let $H$ be the orthocentre and $L,M,N$ the midpoints of the sides $AB, BC, CA$ respectively. Prove that
\[HL^{2} + HM^{2} + HN^{2} < AL^{2} + BM^{2} + CN^{2}\]
if and only if $ABC$ is acute-angled.
1989 IberoAmerican, 2
Let $x,y,z$ be real numbers such that $0\le x,y,z\le\frac{\pi}{2}$. Prove the inequality
\[\frac{\pi}{2}+2\sin x\cos y+2\sin y\cos z\ge\sin 2x+\sin 2y+\sin 2z.\]
2006 AIME Problems, 7
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal{C}$ to the area of shaded region $\mathcal{B}$ is $11/5$. Find the ratio of shaded region $\mathcal{D}$ to the area of shaded region $\mathcal{A}$.
[asy]
defaultpen(linewidth(0.7)+fontsize(10));
for(int i=0; i<4; i=i+1) {
fill((2*i,0)--(2*i+1,0)--(2*i+1,6)--(2*i,6)--cycle, mediumgray);
}
pair A=(1/3,4), B=A+7.5*dir(-17), C=A+7*dir(10);
draw(B--A--C);
fill((7.3,0)--(7.8,0)--(7.8,6)--(7.3,6)--cycle, white);
clip(B--A--C--cycle);
for(int i=0; i<9; i=i+1) {
draw((i,1)--(i,6));
}
label("$\mathcal{A}$", A+0.2*dir(-17), S);
label("$\mathcal{B}$", A+2.3*dir(-17), S);
label("$\mathcal{C}$", A+4.4*dir(-17), S);
label("$\mathcal{D}$", A+6.5*dir(-17), S);[/asy]
2004 France Team Selection Test, 2
Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$.
Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$.
[i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$.
Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.
2014 China Western Mathematical Olympiad, 2
Let $ AB$ be the diameter of semicircle $O$ ,
$C, D $ be points on the arc $AB$,
$P, Q$ be respectively the circumcenter of $\triangle OAC $ and $\triangle OBD $ .
Prove that:$CP\cdot CQ=DP \cdot DQ$.[asy]
import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black;
real h=sqrt(55/64);
pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B);
D(arc(O,1,0,180),darkgreen);
D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue);
D(O);
[/asy]
2009 AMC 8, 7
The triangular plot of ACD lies between Aspen Road, Brown Road and a railroad. Main Street runs east and west, and the railroad runs north and south. The numbers in the diagram indicate distances in miles. The width of the railroad track can be ignored. How many square miles are in the plot of land ACD?
[asy]
size(250);
defaultpen(linewidth(0.55));
pair A=(-6,0), B=origin, C=(0,6), D=(0,12);
pair ac=C+2.828*dir(45),
ca=A+2.828*dir(225),
ad=D+2.828*dir(A--D),
da=A+2.828*dir(D--A),
ab=(2.828,0),
ba=(-6-2.828, 0);
fill(A--C--D--cycle, gray);
draw(ba--ab);
draw(ac--ca);
draw(ad--da);
draw((0,-1)--(0,15));
draw((1/3, -1)--(1/3, 15));
int i;
for(i=1; i<15; i=i+1) {
draw((-1/10, i)--(13/30, i));
}
label("$A$", A, SE);
label("$B$", B, SE);
label("$C$", C, SE);
label("$D$", D, SE);
label("$3$", (1/3,3), E);
label("$3$", (1/3,9), E);
label("$3$", (-3,0), S);
label("Main", (-3,0), N);
label(rotate(45)*"Aspen", A--C, SE);
label(rotate(63.43494882)*"Brown", A--D, NW);
[/asy]
$\textbf{(A)}\ 2\qquad
\textbf{(B)}\ 3 \qquad
\textbf{(C)}\ 4.5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 9$
1994 Vietnam National Olympiad, 3
Define the sequence $\{x_{n}\}$ by $x_{0}=a\in (0,1)$ and $x_{n+1}=\frac{4}{\pi^{2}}(\cos^{-1}x_{n}+\frac{\pi}{2})\sin^{-1}x_{n}(n=0,1,2,...)$. Show that the sequence converges and find its limit.
2001 National Olympiad First Round, 33
Let $ABC$ be a triangle such that $|AC|=1$ and $|AB|=\sqrt 2$. Let $M$ be a point such that $|MA|=|AB|$, $m(\widehat{MAB}) = 90^\circ$, and $C$ and $M$ are on the opposite sides of $AB$. Let $N$ be a point such that $|NA|=|AX|$, $m(\widehat{NAC}) = 90^\circ$, and $B$ and $N$ are on the opposite sides of $AC$. If the line passing throung $A$ and the circumcenter of triangle $MAN$ meets $[BC]$ at $F$, what is $\dfrac {|BF|}{|FC|}$?
$
\textbf{(A)}\ 2\sqrt 2
\qquad\textbf{(B)}\ 2\sqrt 3
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ 3\sqrt 2
$
2009 China Northern MO, 2
In an acute triangle $ABC$ , $AB>AC$ , $ \cos B+ \cos C=1$ , $E,F$ are on the extend line of $AB,AC$ such that $\angle ABF = \angle ACE = 90$ .
(1) Prove :$BE+CF=EF$ ;
(2) Assume the bisector of $\angle EBC$ meet $EF$ at $P$ , prove that $CP$ is the bisector of $\angle BCF$.
[img]https://cdn.artofproblemsolving.com/attachments/a/2/c554c2bc0b4e044c45f88138568f5234d544a8.png[/img]
2007 Today's Calculation Of Integral, 176
Let $f_{n}(x)=\sum_{k=1}^{n}\frac{\sin kx}{\sqrt{k(k+1)}}.$
Find $\lim_{n\to\infty}\int_{0}^{2\pi}\{f_{n}(x)\}^{2}dx.$
1999 India National Olympiad, 4
Let $\Gamma$ and $\Gamma'$ be two concentric circles. Let $ABC$ and $A'B'C'$ be any two equilateral triangles inscribed in $\Gamma$ and $\Gamma'$ respectively. If $P$ and $P'$ are any two points on $\Gamma$ and $\Gamma'$ respectively, show that \[ P'A^2 + P'B^2 + P'C^2 = A'P^2 + B'P^2 + C'P^2. \]
2012 China Team Selection Test, 1
In an acute-angled $ABC$, $\angle A>60^{\circ}$, $H$ is its orthocenter. $M,N$ are two points on $AB,AC$ respectively, such that $\angle HMB=\angle HNC=60^{\circ}$. Let $O$ be the circumcenter of triangle $HMN$. $D$ is a point on the same side with $A$ of $BC$ such that $\triangle DBC$ is an equilateral triangle. Prove that $H,O,D$ are collinear.
1958 Polish MO Finals, 3
Prove that if $ n $ is a natural number greater than $ 1 $, then
$$
\cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \cos \frac{6\pi}{n} + \ldots + \cos \frac{2n \pi}{n} = 0.$$
1993 Canada National Olympiad, 3
In triangle $ABC,$ the medians to the sides $\overline{AB}$ and $\overline{AC}$ are perpendicular. Prove that $\cot B+\cot C\ge \frac23.$
1960 Polish MO Finals, 2
A plane is drawn through the height of a regular tetrahedron, which intersects the planes of the lateral faces along $ 3 $ lines that form angles $ \alpha $, $ \beta $, $ \gamma $ with the plane of the tetrahedron's base. Prove that
$$ tg^2 \alpha + tg^2 \beta + tg^2 \gamma =12.$$
2007 Today's Calculation Of Integral, 198
Compare the values of the following definite integrals.
\[\int_{0}^{\infty}\ln \left(x+\frac{1}{x}\right)\frac{dx}{1+x^{2}},\ \ \int_{0}^{\frac{\pi}{2}}\left(\frac{\theta}{\sin \theta}\right)^{2}d\theta\]
2010 Today's Calculation Of Integral, 637
For a non negative integer $n$, set t $I_n=\int_0^{\frac{\pi}{4}} \tan ^ n x\ dx$ to answer the following questions:
(1) Calculate $I_{n+2}+I_n.$
(2) Evaluate the values of $I_1,\ I_2$ and $I_3.$
1978 Niigata university entrance exam
1964 German National Olympiad, 2
Find all real values $x$ that satisfy the following equation:
$$\frac{\sin 3x cos \left(\frac{\pi}{3}-4x \right)+ 1}{\sin \left(\frac{\pi}{3}-7x \right)
- cos\left(\frac{\pi}{6}+x \right)+m}= 0$$
where $m$ is a given real number.
2011 AMC 12/AHSME, 16
Rhombus $ABCD$ has side length $2$ and $\angle B = 120 ^\circ$. Region $R$ consists of all points inside the rhombus that are closer to vertex $B$ than any of the other three vertices. What is the area of $R$?
$ \textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad
\textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad
\textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad
\textbf{(D)}\ 1+\frac{\sqrt{3}}{3} \qquad
\textbf{(E)}\ 2 $
1994 Korea National Olympiad, Problem 2
Let $ \alpha,\beta,\gamma$ be the angles of a triangle. Prove that
$csc^2\frac{\alpha}{2}+csc^2\frac{\beta}{2}+csc^2\frac{\gamma}{2} \ge 12$
and find the conditions for equality.
2003 AIME Problems, 4
Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \textstyle \frac{1}{2} (\log_{10} n - 1)$, find $n$.
2017 Latvia Baltic Way TST, 2
Find all pairs of real numbers $(x, y)$ that satisfy the equation
$$\frac{(x+y)(2-\sin(x+y))}{4\sin^2(x+y)}=\frac{xy}{x+y}$$
2017 Nordic, 2
Let $a, b, \alpha, \beta$ be real numbers such that $0 \leq a, b \leq 1$, and $0 \leq \alpha, \beta \leq \frac{\pi}{2}$. Show that if \[ ab\cos(\alpha - \beta) \leq \sqrt{(1-a^2)(1-b^2)}, \] then \[ a\cos\alpha + b\sin\beta \leq 1 + ab\sin(\beta - \alpha). \]