This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2005 Bulgaria National Olympiad, 4

Let $ABC$ be a triangle with $AC\neq BC$, and let $A^{\prime }B^{\prime }C$ be a triangle obtained from $ABC$ after some rotation centered at $C$. Let $M,E,F$ be the midpoints of the segments $BA^{\prime },AC$ and $CB^{\prime }$ respectively. If $EM=FM$, find $\widehat{EMF}$.

2006 Grigore Moisil Intercounty, 1

Let $ABC$ be a triangle with $b\neq c$. Points $D$ is the midpoint of $BC$ and let $E$ be the foot of angle $A$ bisector. In the exterior of the triangle we construct the similar triangles $AMB$ and $ANC$ . Prove: a) $MN\bot AD \Longleftrightarrow MA \bot AB$ b) $MN\bot AE \Longleftrightarrow M,A,N$ are colinear.

1998 Harvard-MIT Mathematics Tournament, 1

Farmer Tim is lost in the densely-forested Cartesian plane. Starting from the origin he walks a sinusoidal path in search of home; that is, after $t$ minutes he is at position $(t,\sin t)$. Five minutes after he sets out, Alex enters the forest at the origin and sets out in search of Tim. He walks in such a way that after he has been in the forest for $m$ minutes, his position is $(m,\cos t)$. What is the greatest distance between Alex and Farmer Tim while they are walking in these paths?

1998 IMO Shortlist, 6

Let $ABCDEF$ be a convex hexagon such that $\angle B+\angle D+\angle F=360^{\circ }$ and \[ \frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1. \] Prove that \[ \frac{BC}{CA} \cdot \frac{AE}{EF} \cdot \frac{FD}{DB} = 1. \]

2003 Purple Comet Problems, 25

Tags: trigonometry
Given that $(1 + \tan 1^{\circ})(1 + \tan 2^{\circ}) \ldots (1 + \tan 45^{\circ}) = 2^n$, find $n$.

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

2009 Today's Calculation Of Integral, 467

Let the curve $ C: y\equal{}x\sqrt{9\minus{}x^2}\ (x\geq 0)$. (1) Find the maximum value of $ y$. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$ axis. (3) Find the volume of the solid generated by rotation of the figure about the $ y$ axis.

1971 IMO Longlists, 28

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

1969 IMO Longlists, 38

$(HUN 5)$ Let $r$ and $m (r \le m)$ be natural numbers and $Ak =\frac{2k-1}{2m}\pi$. Evaluate $\frac{1}{m^2}\displaystyle\sum_{k=1}^{m}\displaystyle\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k-rA_l)$

1998 Canada National Olympiad, 4

Let $ABC$ be a triangle with $\angle{BAC} = 40^{\circ}$ and $\angle{ABC}=60^{\circ}$. Let $D$ and $E$ be the points lying on the sides $AC$ and $AB$, respectively, such that $\angle{CBD} = 40^{\circ}$ and $\angle{BCE} = 70^{\circ}$. Let $F$ be the point of intersection of the lines $BD$ and $CE$. Show that the line $AF$ is perpendicular to the line $BC$.

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

2006 Indonesia MO, 3

Let $ S$ be the set of all triangles $ ABC$ which have property: $ \tan A,\tan B,\tan C$ are positive integers. Prove that all triangles in $ S$ are similar.

1991 Arnold's Trivium, 63

Tags: trigonometry
Is there a solution of the Cauchy problem $y\partial u/\partial x+\sin x\partial u/\partial y=y$, $u|_{x=0}=y^4$ on the whole $(x,y)$ plane? Is it unique?

1979 IMO Shortlist, 13

Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

1996 AIME Problems, 11

Let $P$ be the product of the roots of $z^6+z^4+z^3+z^2+1=0$ that have positive imaginary part, and suppose that $P=r(\cos \theta^\circ+i\sin \theta^\circ),$ where $0<r$ and $0\le \theta <360.$ Find $\theta.$

2017 District Olympiad, 1

Let $ A_1,B_1,C_1 $ be the feet of the heights of an acute triangle $ ABC. $ On the segments $ B_1C_1,C_1A_1,A_1B_1, $ take the points $ X,Y, $ respectively, $ Z, $ such that $$ \left\{\begin{matrix}\frac{C_1X}{XB_1} =\frac{b\cos\angle BCA}{c\cos\angle ABC} \\ \frac{A_1Y}{YC_1} =\frac{c\cos\angle BAC}{a\cos\angle BCA} \\ \frac{B_1Z}{ZA_1} =\frac{a\cos\angle ABC}{b\cos\angle BAC} \end{matrix}\right. . $$ Show that $ AX,BY,CZ, $ are concurrent.

2010 Today's Calculation Of Integral, 664

For a positive integer $n$, let $I_n=\int_{-\pi}^{\pi} \left(\frac{\pi}{2}-|x|\right)\cos nx\ dx$. Find $I_1+I_2+I_3+I_4$. [i]1992 University of Fukui entrance exam/Medicine[/i]

1997 National High School Mathematics League, 13

Tags: trigonometry
$x\geq y\geq z\geq \frac{\pi}{12},x+y+z=\frac{\pi}{2}$, find the maximum and minumum value of $\cos x\sin y\cos z$.

2000 USA Team Selection Test, 6

Let $ ABC$ be a triangle inscribed in a circle of radius $ R$, and let $ P$ be a point in the interior of triangle $ ABC$. Prove that \[ \frac {PA}{BC^{2}} \plus{} \frac {PB}{CA^{2}} \plus{} \frac {PC}{AB^{2}}\ge \frac {1}{R}. \] [i]Alternative formulation:[/i] If $ ABC$ is a triangle with sidelengths $ BC\equal{}a$, $ CA\equal{}b$, $ AB\equal{}c$ and circumradius $ R$, and $ P$ is a point inside the triangle $ ABC$, then prove that $ \frac {PA}{a^{2}} \plus{} \frac {PB}{b^{2}} \plus{} \frac {PC}{c^{2}}\ge \frac {1}{R}$.

2012 India IMO Training Camp, 1

Let $ABC$ be an isosceles triangle with $AB=AC$. Let $D$ be a point on the segment $BC$ such that $BD=2DC$. Let $P$ be a point on the segment $AD$ such that $\angle BAC=\angle BPD$. Prove that $\angle BAC=2\angle DPC$.

2000 Harvard-MIT Mathematics Tournament, 8

Let $\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}$ and $\vec{v_5}$ be vectors in three dimensions. Show that for some $i,j$ in $1,2,3,4,5$, $\vec{v_i}\cdot \vec{v_j}\ge 0$.

1975 AMC 12/AHSME, 30

Let $x=\cos 36^{\circ} - \cos 72^{\circ}$. Then $x$ equals $ \textbf{(A)}\ \frac{1}{3} \qquad\textbf{(B)}\ \frac{1}{2} \qquad\textbf{(C)}\ 3-\sqrt{6} \qquad\textbf{(D)}\ 2\sqrt{3}-3 \qquad\textbf{(E)}\ \text{none of these} $

2012 Mediterranean Mathematics Olympiad, 2

In an acute $\triangle ABC$, prove that \begin{align*}\frac{1}{3}\left(\frac{\tan^2A}{\tan B\tan C}+\frac{\tan^2 B}{\tan C\tan A}+\frac{\tan^2 C}{\tan A\tan B}\right) \\ +3\left(\frac{1}{\tan A+\tan B+\tan C}\right)^{\frac{2}{3}}\ge 2.\end{align*}

2004 Uzbekistan National Olympiad, 4

In triangle $ABC$ $CL$ is a bisector($L$ lies $AB$) $I$ is center incircle of $ABC$. $G$ is intersection medians. If $a=BC, b=AC, c=AB$ and $CL\perp GI$ then prove that $\frac{a+b+c}{3}=\frac{2ab}{a+b}$