Found problems: 3349
2012 Turkey MO (2nd round), 6
Let $B$ and $D$ be points on segments $[AE]$ and $[AF]$ respectively. Excircles of triangles $ABF$ and $ADE$ touching sides $BF$ and $DE$ is the same, and its center is $I$. $BF$ and $DE$ intersects at $C$. Let $P_1, P_2, P_3, P_4, Q_1, Q_2, Q_3, Q_4$ be the circumcenters of triangles $IAB, IBC, ICD, IDA, IAE, IEC, ICF, IFA$ respectively.
[b]a) [/b] Show that points $P_1, P_2, P_3, P_4$ concylic and points $Q_1, Q_2, Q_3, Q_4$ concylic.
[b]b) [/b] Denote centers of theese circles as $O_1$ and $O_2$. Prove that $O_1, O_2$ and $I$ are collinear.
2012 Today's Calculation Of Integral, 850
Evaluate
\[\int_0^{\pi} \{(1-x\sin 2x)e^{\cos ^2 x}+(1+x\sin 2x)e^{\sin ^ 2 x}\}\ dx.\]
2011 Vietnam National Olympiad, 3
Let $AB$ be a diameter of a circle $(O)$ and let $P$ be any point on the tangent drawn at $B$ to $(O).$ Define $AP\cap (O)=C\neq A,$ and let $D$ be the point diametrically opposite to $C.$ If $DP$ meets $(O)$ second time in $E,$ then,
[b](i)[/b] Prove that $AE, BC, PO$ concur at $M.$
[b](ii)[/b] If $R$ is the radius of $(O),$ find $P$ such that the area of $\triangle AMB$ is maximum, and calculate the area in terms of $R.$
2012 Romanian Masters In Mathematics, 6
Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$.
[i](Russia) Fedor Ivlev[/i]
2014 Singapore Senior Math Olympiad, 7
Find the largest number among the following numbers:
$ \textbf{(A) }\tan47^{\circ}+\cos47^{\circ}\qquad\textbf{(B) }\cot 47^{\circ}+\sqrt{2}\sin 47^{\circ}\qquad\textbf{(C) }\sqrt{2}\cos47^{\circ}+\sin47^{\circ}\qquad\textbf{(D) }\tan47^{\circ}+\cot47^{\circ}\qquad\textbf{(E) }\cos47^{\circ}+\sqrt{2}\sin47^{\circ} $
2014 Contests, 3
Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.
2002 Greece Junior Math Olympiad, 1
In the exterior of an equilateral triangle $ABC$ of side $\alpha$ we construct an isosceles right-angled triangle $ACD$ with $\angle CAD=90^0.$The lines $DA$ and $CB$ meet at point $E$.
(a) Find the angle $\angle DBC.$
(b) Express the area of triangle $CDE$ in terms of $\alpha.$
(c) Find the length of $BD.$
2013 Today's Calculation Of Integral, 886
Find the functions $f(x),\ g(x)$ such that
$f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$
$g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$
1967 IMO Longlists, 35
Prove the identity \[\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x\] for any natural number $n$ and any angle $x.$
2007 Purple Comet Problems, 7
Allowing $x$ to be a real number, what is the largest value that can be obtained by the function $25\sin(4x)-60\cos(4x)?$
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
2005 Today's Calculation Of Integral, 15
Calculate the following indefinite integrals.
[1] $\int \frac{(x^2-1)^2}{x^4}dx$
[2] $\int \frac{e^{3x}}{\sqrt{e^x+1}}dx$
[3] $\int \sin 2x\cos 3xdx$
[4] $\int x\ln (x+1)dx$
[5] $\int \frac{x}{(x+3)^2}dx$
2013 Math Prize For Girls Problems, 20
Let $a_0$, $a_1$, $a_2$, $\dots$ be an infinite sequence of real numbers such that $a_0 = \frac{4}{5}$ and
\[
a_{n} = 2 a_{n-1}^2 - 1
\]
for every positive integer $n$. Let $c$ be the smallest number such that for every positive integer $n$, the product of the first $n$ terms satisfies the inequality
\[
a_0 a_1 \dots a_{n - 1} \le \frac{c}{2^n}.
\]
What is the value of $100c$, rounded to the nearest integer?
2015 Purple Comet Problems, 22
Let $x$ be a real number between 0 and $\tfrac{\pi}{2}$ for which the function $3\sin^2 x + 8\sin x \cos x + 9\cos^2 x$ obtains its maximum value, $M$. Find the value of $M + 100\cos^2x$.
2009 Serbia Team Selection Test, 1
Let $ \alpha$ and $ \beta$ be the angles of a non-isosceles triangle $ ABC$ at points $ A$ and $ B$, respectively. Let the bisectors of these angles intersect opposing sides of the triangle in $ D$ and $ E$, respectively. Prove that the acute angle between the lines $ DE$ and $ AB$ isn't greater than $ \frac{|\alpha\minus{}\beta|}3$.
2013 ELMO Shortlist, 6
Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that
\[\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.\][i]Proposed by Victor Wang[/i]
2012 Korea National Olympiad, 1
Let $ ABC $ be an obtuse triangle with $ \angle A > 90^{\circ} $. Let circle $ O $ be the circumcircle of $ ABC $. $ D $ is a point lying on segment $ AB $ such that $ AD = AC $. Let $ AK $ be the diameter of circle $ O $. Two lines $ AK $ and $ CD $ meet at $ L $. A circle passing through $ D, K, L $ meets with circle $ O $ at $ P ( \ne K ) $ . Given that $ AK = 2, \angle BCD = \angle BAP = 10^{\circ} $, prove that $ DP = \sin ( \frac{ \angle A}{2} )$.
2014 IPhOO, 1
A ring is of the shape of a hoola-hoop of negligible thickness. A ring of radius $R$ carries a current $I$. Prove that the magnetic field at a given point in the plane of the ring at a distance $a$ from the center, due to the magnetic field of the ring, is \[ B = \dfrac {\mu_0}{2\pi} \cdot IR \cdot \displaystyle\int_{0}^{\pi} \dfrac {R - a \cos \theta}{\sqrt{\left( a^2 + R^2 - 2aR \cos \theta \right)^3}} \, \mathrm{d}\theta. \]
[i]Problem proposed by Ahaan Rungta[/i]
2010 Today's Calculation Of Integral, 531
(1) Let $ f(x)$ be a continuous function defined on $ [a,\ b]$, it is known that there exists some $ c$ such that
\[ \int_a^b f(x)\ dx \equal{} (b \minus{} a)f(c)\ (a < c < b)\]
Explain the fact by using graph. Note that you don't need to prove the statement.
(2) Let $ f(x) \equal{} a_0 \plus{} a_1x \plus{} a_2x^2 \plus{} \cdots\cdots \plus{} a_nx^n$,
Prove that there exists $ \theta$ such that
\[ f(\sin \theta) \equal{} a_0 \plus{} \frac {a_1}{2} \plus{} \frac {a_3}{3} \plus{} \cdots\cdots \plus{} \frac {a_n}{n \plus{} 1},\ 0 < \theta < \frac {\pi}{2}.\]
2007 Iran Team Selection Test, 3
Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence.
a) Prove that $B_{n}$ does not depend on location of $P$.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.
2005 Today's Calculation Of Integral, 28
Evaluate
\[\int_0^{\frac{\pi}{4}} \frac{x\cos 5x}{\cos x}dx\]
2003 IMC, 2
Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)
Today's calculation of integrals, 852
Let $f(x)$ be a polynomial. Prove that if $\int_0^1 f(x)g_n(x)\ dx=0\ (n=0,\ 1,\ 2,\ \cdots)$, then all coefficients of $f(x)$ are 0 for each case as follows.
(1) $g_n(x)=(1+x)^n$
(2) $g_n(x)=\sin n\pi x$
(3) $g_n(x)=e^{nx}$
2013 Online Math Open Problems, 11
Let $A$, $B$, and $C$ be distinct points on a line with $AB=AC=1$. Square $ABDE$ and equilateral triangle $ACF$ are drawn on the same side of line $BC$. What is the degree measure of the acute angle formed by lines $EC$ and $BF$?
[i]Ray Li[/i]
2015 Harvard-MIT Mathematics Tournament, 7
Suppose $(a_1,a_2,a_3,a_4)$ is a 4-term sequence of real numbers satisfying the following two conditions:
[list]
[*] $a_3=a_2+a_1$ and $a_4=a_3+a_2$;
[*] there exist real numbers $a,b,c$ such that \[an^2+bn+c=\cos(a_n)\] for all $n\in\{1,2,3,4\}$.
[/list]
Compute the maximum possible value of \[\cos(a_1)-\cos(a_4)\] over all such sequences $(a_1,a_2,a_3,a_4)$.