Found problems: 3349
2010 Today's Calculation Of Integral, 551
In the coordinate plane, find the area of the region bounded by the curve $ C: y\equal{}\frac{x\plus{}1}{x^2\plus{}1}$ and the line $ L: y\equal{}1$.
1980 USAMO, 3
Let $F_r=x^r\sin{rA}+y^r\sin{rB}+z^r\sin{rC}$, where $x,y,z,A,B,C$ are real and $A+B+C$ is an integral multiple of $\pi$. Prove that if $F_1=F_2=0$, then $F_r=0$ for all positive integral $r$.
2012 Online Math Open Problems, 16
Let $ABC$ be a triangle with $AB = 4024$, $AC = 4024$, and $BC=2012$. The reflection of line $AC$ over line $AB$ meets the circumcircle of $\triangle{ABC}$ at a point $D\ne A$. Find the length of segment $CD$.
[i]Ray Li.[/i]
1998 AMC 12/AHSME, 28
In triangle $ ABC$, angle $ C$ is a right angle and $ CB > CA$. Point $ D$ is located on $ \overline{BC}$ so that angle $ CAD$ is twice angle $ DAB$. If $ AC/AD \equal{} 2/3$, then $ CD/BD \equal{} m/n$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
$ \textbf{(A)}\ 10\qquad
\textbf{(B)}\ 14\qquad
\textbf{(C)}\ 18\qquad
\textbf{(D)}\ 22\qquad
\textbf{(E)}\ 26$
2007 Indonesia TST, 1
Let $ P$ be a point in triangle $ ABC$, and define $ \alpha,\beta,\gamma$ as follows: \[ \alpha\equal{}\angle BPC\minus{}\angle BAC, \quad \beta\equal{}\angle CPA\minus{}\angle \angle CBA, \quad \gamma\equal{}\angle APB\minus{}\angle ACB.\] Prove that \[ PA\dfrac{\sin \angle BAC}{\sin \alpha}\equal{}PB\dfrac{\sin \angle CBA}{\sin \beta}\equal{}PC\dfrac{\sin \angle ACB}{\sin \gamma}.\]
2008 Harvard-MIT Mathematics Tournament, 7
Given that $ x \plus{} \sin y \equal{} 2008$ and $ x \plus{} 2008 \cos y \equal{} 2007$, where $ 0 \leq y \leq \pi/2$, find the value of $ x \plus{} y$.
2005 IMO Shortlist, 5
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
1983 IMO Longlists, 53
Let $a \in \mathbb R$ and let $z_1, z_2, \ldots, z_n$ be complex numbers of modulus $1$ satisfying the relation
\[\sum_{k=1}^n z_k^3=4(a+(a-n)i)- 3 \sum_{k=1}^n \overline{z_k}\]
Prove that $a \in \{0, 1,\ldots, n \}$ and $z_k \in \{1, i \}$ for all $k.$
2005 Today's Calculation Of Integral, 81
Prove the following inequality.
\[\frac{1}{12}(\pi -6+2\sqrt{3})\leq \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \ln (1+\cos 2x) dx\leq \frac{1}{4}(2-\sqrt{3})\]
2006 Estonia National Olympiad, 4
Triangle $ ABC$ is isosceles with $ AC \equal{} BC$ and $ \angle{C} \equal{} 120^o$. Points $ D$ and $ E$ are chosen on segment $ AB$ so that $ |AD| \equal{} |DE| \equal{} |EB|$. Find the sizes of the angles of triangle $ CDE$.
2002 Estonia Team Selection Test, 2
Consider an isosceles triangle $KL_1L_2$ with $|KL_1|=|KL_2|$ and let $KA, L_1B_1,L_2B_2$ be its angle bisectors. Prove that $\cos \angle B_1AB_2 < \frac35$
2010 CHMMC Winter, 3
Assume that the earth is a perfect sphere. A plane flies between $30^o N$ $45^o W$ and $30^o N$ $45^o E$ along the shortest possible route. Let $\theta$ be the northernmost latitude that the plane flies over. Compute $\sin \theta$.
1989 AMC 12/AHSME, 11
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2025 Euler Olympiad, Round 2, 3
Find all functions \( f : \mathbb{R} \to \mathbb{R} \) such that the following two conditions hold:
[b]1. [/b] For all real numbers $a$ and $b$ satisfying $a^2 + b^2 = 1$, We have $f(x) + f(y) \geq f(ax + by)$ for all real numbers $x, y$.
[b]2.[/b] For all real numbers $x$ and $y$, there exist real numbers $a$ and $b$, such that $a^2 + b^2 = 1$ and $f(x) + f(y) = f(ax + by)$.
[i]Proposed by Zaza Melikidze, Georgia[/i]
2007 Today's Calculation Of Integral, 187
For a constant $a,$ let $f(x)=ax\sin x+x+\frac{\pi}{2}.$ Find the range of $a$ such that $\int_{0}^{\pi}\{f'(x)\}^{2}\ dx \geq f\left(\frac{\pi}{2}\right).$
2006 Romania National Olympiad, 4
Let $f: [0,1]\to\mathbb{R}$ be a continuous function such that \[ \int_{0}^{1}f(x)dx=0. \] Prove that there is $c\in (0,1)$ such that \[ \int_{0}^{c}xf(x)dx=0. \]
[i]Cezar Lupu, Tudorel Lupu[/i]
2014 ELMO Shortlist, 4
Let $ABCD$ be a quadrilateral inscribed in circle $\omega$. Define $E = AA \cap CD$, $F = AA \cap BC$, $G = BE \cap \omega$, $H = BE \cap AD$, $I = DF \cap \omega$, and $J = DF \cap AB$. Prove that $GI$, $HJ$, and the $B$-symmedian are concurrent.
[i]Proposed by Robin Park[/i]
1989 AMC 12/AHSME, 28
Find the sum of the roots of $\tan^2x-9\tan x+1=0$ that are between $x=0$ and $x=2\pi$ radians.
$ \textbf{(A)}\ \frac{\pi}{2} \qquad\textbf{(B)}\ \pi \qquad\textbf{(C)}\ \frac{3\pi}{2} \qquad\textbf{(D)}\ 3\pi \qquad\textbf{(E)}\ 4\pi $
2006 Romania National Olympiad, 4
Let $a,b,c \in \left[ \frac 12, 1 \right]$. Prove that \[ 2 \leq \frac{ a+b}{1+c} + \frac{ b+c}{1+a} + \frac{ c+a}{1+b} \leq 3 . \]
[i]selected by Mircea Lascu[/i]
2008 AMC 10, 25
A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8)+fontsize(8));
draw(Circle((0,0),4));
path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle;
draw(mat);
draw(rotate(60)*mat);
draw(rotate(120)*mat);
draw(rotate(180)*mat);
draw(rotate(240)*mat);
draw(rotate(300)*mat);
label("$x$",(-2.687,0),E);
label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$
2013 Online Math Open Problems, 41
While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$.
[hide="Clarifications"]
[list]
[*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect.
[*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide]
[i]Ray Li[/i]
1985 All Soviet Union Mathematical Olympiad, 403
Find all the pairs $(x,y)$ such that $|\sin x-\sin y| + \sin x \sin y \le 0$.
2010 Today's Calculation Of Integral, 573
Find the area of the figure bounded by three curves
$ C_1: y\equal{}\sin x\ \left(0\leq x<\frac {\pi}{2}\right)$
$ C_2: y\equal{}\cos x\ \left(0\leq x<\frac {\pi}{2}\right)$
$ C_3: y\equal{}\tan x\ \left(0\leq x<\frac {\pi}{2}\right)$.
2011 AIME Problems, 8
Let $z_1,z_2,z_3,\dots,z_{12}$ be the 12 zeroes of the polynomial $z^{12}-2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $i z_j$. Then the maximum possible value of the real part of $\displaystyle\sum_{j=1}^{12} w_j$ can be written as $m+\sqrt{n}$ where $m$ and $n$ are positive integers. Find $m+n$.
2012 Today's Calculation Of Integral, 852
Let $f(x)$ be a polynomial. Prove that if $\int_0^1 f(x)g_n(x)\ dx=0\ (n=0,\ 1,\ 2,\ \cdots)$, then all coefficients of $f(x)$ are 0 for each case as follows.
(1) $g_n(x)=(1+x)^n$
(2) $g_n(x)=\sin n\pi x$
(3) $g_n(x)=e^{nx}$