This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2009 Iran MO (3rd Round), 1

1-Let $ \triangle ABC$ be a triangle and $ (O)$ its circumcircle. $ D$ is the midpoint of arc $ BC$ which doesn't contain $ A$. We draw a circle $ W$ that is tangent internally to $ (O)$ at $ D$ and tangent to $ BC$.We draw the tangent $ AT$ from $ A$ to circle $ W$.$ P$ is taken on $ AB$ such that $ AP \equal{} AT$.$ P$ and $ T$ are at the same side wrt $ A$.PROVE $ \angle APD \equal{} 90^\circ$.

1999 China Second Round Olympiad, 2

Let $a$,$b$,$c$ be real numbers. Let $z_{1}$,$z_{2}$,$z_{3}$ be complex numbers such that $|z_{k}|=1$ $(k=1,2,3)$ $~$ and $~$ $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}+\frac{z_{3}}{z_{1}}=1$ Find $|az_{1}+bz_{2}+cz_{3}|$.

2011 Today's Calculation Of Integral, 739

Find the function $f(x)$ such that : \[f(x)=\cos x+\int_0^{2\pi} f(y)\sin (x-y)\ dy\]

2005 Today's Calculation Of Integral, 7

Calculate the following indefinite integrals. [1] $\int \sqrt{x}(\sqrt{x}+1)^2 dx$ [2] $\int (e^x+2e^{x+1}-3e^{x+2})dx$ [3] $\int (\sin ^2 x+\cos x)\sin x dx$ [4] $\int x\sqrt{2-x} dx$ [5] $\int x\ln x dx$

2005 Today's Calculation Of Integral, 78

Let $\alpha,\beta$ be the distinct positive roots of the equation of $2x=\tan x$. Evaluate \[\int_0^1 \sin \alpha x\sin \beta x\ dx\]

1979 IMO Shortlist, 10

Show that for any vectors $a, b$ in Euclidean space, \[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\] Remark. Here $\times$ denotes the vector product.

1978 AMC 12/AHSME, 23

[asy] size(100); draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); draw((0,1)--(1,0)); draw((0,0)--(.5,sqrt(3)/2)--(1,0)); label("$A$",(0,0),SW); label("$B$",(1,0),SE); label("$C$",(1,1),NE); label("$D$",(0,1),NW); label("$E$",(.5,sqrt(3)/2),E); label("$F$",intersectionpoint((0,0)--(.5,sqrt(3)/2),(0,1)--(1,0)),2W); //Credit to chezbgone2 for the diagram[/asy] Vertex $E$ of equilateral triangle $ABE$ is in the interior of square $ABCD$, and $F$ is the point of intersection of diagonal $BD$ and line segment $AE$. If length $AB$ is $\sqrt{1+\sqrt{3}}$ then the area of $\triangle ABF$ is $\textbf{(A) }1\qquad\textbf{(B) }\frac{\sqrt{2}}{2}\qquad\textbf{(C) }\frac{\sqrt{3}}{2}$ $\qquad\textbf{(D) }4-2\sqrt{3}\qquad \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}$

1964 AMC 12/AHSME, 29

In this figure $\angle RFS = \angle FDR$, $FD = 4$ inches, $DR = 6$ inches, $FR = 5$ inches, $FS = 7\dfrac{1}{2}$ inches. The length of $RS$, in inches, is: [asy] import olympiad; pair F,R,S,D; F=origin; R=5*dir(aCos(9/16)); S=(7.5,0); D=4*dir(aCos(9/16)+aCos(1/8)); label("$F$",F,SW);label("$R$",R,N); label("$S$",S,SE); label("$D$",D,W); label("$7\frac{1}{2}$",(F+S)/2.5,SE); label("$4$",midpoint(F--D),SW); label("$5$",midpoint(F--R),W); label("$6$",midpoint(D--R),N); draw(F--D--R--F--S--R); markscalefactor=0.1; draw(anglemark(S,F,R)); draw(anglemark(F,D,R)); //Credit to throwaway1489 for the diagram[/asy] $\textbf{(A)}\ \text{undetermined} \qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 5\dfrac{1}{2} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 6\dfrac{1}{4}$

1949-56 Chisinau City MO, 50

Prove the inequality: $ctg \frac{a}{2}> 1 + ctg a$ for $0 <a <\frac{\pi}{2}$

1989 AMC 12/AHSME, 19

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$, $4$, and $5$. What is the area of the triangle? $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ \frac{18}{\pi^2} \qquad \textbf{(C)}\ \frac{9}{\pi^2}\left(\sqrt{3}-1\right) \qquad \textbf{(D)}\ \frac{9}{\pi^2}\left(\sqrt{3}+1\right) \qquad \textbf{(E)}\ \frac{9}{\pi^2}\left(\sqrt{3}+3\right)$

2015 NIMO Problems, 2

Tags: trigonometry
Let $ABCD$ be a square with side length $100$. Denote by $M$ the midpoint of $AB$. Point $P$ is selected inside the square so that $MP = 50$ and $PC = 100$. Compute $AP^2$. [i]Based on a proposal by Amogh Gaitonde[/i]

2010 Contests, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

1986 IMO Longlists, 78

If $T$ and $T_1$ are two triangles with angles $x, y, z$ and $x_1, y_1, z_1$, respectively, prove the inequality \[\frac{\cos x_1}{\sin x}+\frac{\cos y_1}{\sin y}+\frac{\cos z_1}{\sin z} \leq \cot x+\cot y+\cot z.\]

2024 India Regional Mathematical Olympiad, 3

Let $ABC$ be an acute triangle with $AB = AC$. Let $D$ be the point on $BC$ such that $AD$ is perpendicular to $BC$. Let $O,H,G$ be the circumcenter, orthocenter and centroid of triangle $ABC$ respectively. Suppose that $2 \cdot OD = 23 \cdot HD$. Prove that $G$ lies on the incircle of triangle $ABC$.

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

1985 IMO Longlists, 24

Let $d \geq 1$ be an integer that is not the square of an integer. Prove that for every integer $n \geq 1,$ \[(n \sqrt d +1) \cdot | \sin(n \pi \sqrt d )| \geq 1\]

2013 Online Math Open Problems, 40

Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$. [i]James Tao[/i]

2006 MOP Homework, 2

Let $a, b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_n$ be real numbers such that \[x^{2n} + ax^{2n - 1} + ax^{2n - 2} + \dots + ax + 1 = \prod_{i = 1}^{n}{(x^2 + b_ix + c_i)}\] Prove that $c_1 = c_2 = \dots = c_n = 1$. As a consequence, all complex zeroes of this polynomial must lie on the unit circle.

2013 Harvard-MIT Mathematics Tournament, 23

Let $ABCD$ be a parallelogram with $AB=8$, $AD=11$, and $\angle BAD=60^\circ$. Let $X$ be on segment $CD$ with $CX/XD=1/3$ and $Y$ be on segment $AD$ with $AY/YD=1/2$. Let $Z$ be on segment $AB$ such that $AX$, $BY$, and $DZ$ are concurrent. Determine the area of triangle $XYZ$.

1987 IMO Longlists, 47

Through a point $P$ within a triangle $ABC$ the lines $l, m$, and $n$ perpendicular respectively to $AP,BP,CP$ are drawn. Prove that if $l$ intersects the line $BC$ in $Q$, $m$ intersects $AC$ in $R$, and $n$ intersects $AB$ in $S$, then the points $Q, R$, and $S$ are collinear.

2011 Albania National Olympiad, 3

In a convex quadrilateral $ABCD$ ,$\angle ABC$ and $\angle BCD$ are $\geq 120^o$. Prove that $|AC|$ + $|BD| \geq |AB|+|BC|+|CD|$. (With $|XY|$ we understand the length of the segment $XY$).

2011 Balkan MO, 1

Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.

1998 India National Olympiad, 4

Suppose $ABCD$ is a cyclic quadrilateral inscribed in a circle of radius one unit. If $AB \cdot BC \cdot CD \cdot DA \geq 4$, prove that $ABCD$ is a square.

2007 Today's Calculation Of Integral, 232

For $ f(x)\equal{}1\minus{}\sin x$, let $ g(x)\equal{}\int_0^x (x\minus{}t)f(t)\ dt.$ Show that $ g(x\plus{}y)\plus{}g(x\minus{}y)\geq 2g(x)$ for any real numbers $ x,\ y.$

2025 Thailand Mathematical Olympiad, 4

Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.