Found problems: 3349
2011 AMC 12/AHSME, 17
Circles with radii $1, 2$, and $3$ are mutually externally tangent. What is the area of the triangle determined by the points of tangency?
$ \textbf{(A)}\ \frac{3}{5} \qquad
\textbf{(B)}\ \frac{4}{5} \qquad
\textbf{(C)}\ 1 \qquad
\textbf{(D)}\ \frac{6}{5} \qquad
\textbf{(E)}\ \frac{4}{3}
$
2010 Today's Calculation Of Integral, 614
Evaluate $\int_0^1 \{x(1-x)\}^{\frac 32}dx.$
[i]2010 Hirosaki University School of Medicine entrance exam[/i]
1991 IMO Shortlist, 5
In the triangle $ ABC,$ with $ \angle A \equal{} 60 ^{\circ},$ a parallel $ IF$ to $ AC$ is drawn through the incenter $ I$ of the triangle, where $ F$ lies on the side $ AB.$ The point $ P$ on the side $ BC$ is such that $ 3BP \equal{} BC.$ Show that $ \angle BFP \equal{} \frac{\angle B}{2}.$
2005 Taiwan TST Round 2, 2
In $\triangle ABC$, $AD$ is the bisector of $\angle A$, and $E$, $F$ are the feet of the perpendiculars from $D$ to $AC$ and $AB$, respectively. $H$ is the intersection of $BE$ and $CF$, and $G$, $I$ are the feet of the perpendiculars from $D$ to $BE$ and $CF$, respectively. Prove that both $AFEH$ and $AEIH$ are cyclic quadrilaterals.
2001 Junior Balkan MO, 3
Let $ABC$ be an equilateral triangle and $D$, $E$ points on the sides $[AB]$ and $[AC]$ respectively. If $DF$, $EF$ (with $F\in AE$, $G\in AD$) are the interior angle bisectors of the angles of the triangle $ADE$, prove that the sum of the areas of the triangles $DEF$ and $DEG$ is at most equal with the area of the triangle $ABC$. When does the equality hold?
[i]Greece[/i]
PEN F Problems, 15
Find all rational numbers $k$ such that $0 \le k \le \frac{1}{2}$ and $\cos k \pi$ is rational.
2011 Today's Calculation Of Integral, 710
Evaluate $\int_0^{\frac{\pi}{4}} \frac{\sin \theta (\sin \theta \cos \theta +2)}{\cos ^ 4 \theta}\ d\theta$.
2012 AIME Problems, 13
Three concentric circles have radii $3$, $4$, and $5$. An equilateral triangle with one vertex on each circle has side length $s$. The largest possible area of the triangle can be written as $a+\frac{b}{c}\sqrt{d}$, where $a,b,c$ and $d$ are positive integers, $b$ and $c$ are relatively prime, and $d$ is not divisible by the square of any prime. Find $a+b+c+d$.
2005 ISI B.Stat Entrance Exam, 4
Find all real solutions of the equation $\sin^{5}x+\cos^{3}x=1$.
2006 Estonia National Olympiad, 4
Let O be the circumcentre of an acute triangle ABC and let A′, B′ and C′ be the
circumcentres of triangles BCO, CAO and ABO, respectively. Prove that the area of triangle ABC does not exceed the area of triangle A′B′C′.
1975 Chisinau City MO, 117
Prove that the numbers $\tan^2 20^o, \tan^2 40^o,\tan^2 80^o$ are the roots of the equation $x^3 - 33x^2 + 27x - 33 = 0$.
2011 Indonesia TST, 3
Let $M$ be a point in the interior of triangle $ABC$. Let $A'$ lie on $BC$ with $MA'$ perpendicular to $BC$. Define $B'$ on $CA$ and $C'$ on $AB$ similarly. Define
\[
p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}.
\]
Determine, with proof, the location of $M$ such that $p(M)$ is maximal. Let $\mu(ABC)$ denote this maximum value. For which triangles $ABC$ is the value of $\mu(ABC)$ maximal?
2010 Germany Team Selection Test, 3
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
\[f(x)f(y) = (x+y+1)^2 \cdot f \left( \frac{xy-1}{x+y+1} \right)\] $\forall x,y \in \mathbb{R}$ with $x+y+1 \neq 0$ and $f(x) > 1$ $\forall x > 0.$
2012 Kyoto University Entry Examination, 1
Answer the following questions:
(1) Let $a$ be positive real number. Find $\lim_{n\to\infty} (1+a^{n})^{\frac{1}{n}}.$
(2) Evaluate $\int_1^{\sqrt{3}} \frac{1}{x^2}\ln \sqrt{1+x^2}dx.$
35 points
1991 IMO Shortlist, 19
Let $ \alpha$ be a rational number with $ 0 < \alpha < 1$ and $ \cos (3 \pi \alpha) \plus{} 2\cos(2 \pi \alpha) \equal{} 0$. Prove that $ \alpha \equal{} \frac {2}{3}$.
1995 Irish Math Olympiad, 2
Let $ a,b,c$ be complex numbers. Prove that if all the roots of the equation $ x^3\plus{}ax^2\plus{}bx\plus{}c\equal{}0$ are of module $ 1$, then so are the roots of the equation $ x^3\plus{}|a|x^2\plus{}|b|x\plus{}|c|\equal{}0$.
1988 IMO, 1
Consider 2 concentric circle radii $ R$ and $ r$ ($ R > r$) with centre $ O.$ Fix $ P$ on the small circle and consider the variable chord $ PA$ of the small circle. Points $ B$ and $ C$ lie on the large circle; $ B,P,C$ are collinear and $ BC$ is perpendicular to $ AP.$
[b]i.)[/b] For which values of $ \angle OPA$ is the sum $ BC^2 \plus{} CA^2 \plus{} AB^2$ extremal?
[b]ii.)[/b] What are the possible positions of the midpoints $ U$ of $ BA$ and $ V$ of $ AC$ as $ \angle OPA$ varies?
1971 Spain Mathematical Olympiad, 4
Prove that in every triangle with sides $a, b, c$ and opposite angles $A, B, C$, is fulfilled (measuring the angles in radians) $$\frac{a A+bB+cC}{a+b+c} \ge \frac{\pi}{3}$$
Hint: Use $a \ge b \ge c \Rightarrow A \ge B \ge C$.
2015 Mathematical Talent Reward Programme, MCQ: P 12
Maximum value of $\sin^4\theta +\cos^6\theta $ will be ?
[list=1]
[*] $\frac{1}{2\sqrt{2}}$
[*] $\frac{1}{2}$
[*] $\frac{1}{\sqrt{2}}$
[*] 1
[/list]
2005 Bulgaria Team Selection Test, 2
Find the number of the subsets $B$ of the set $\{1,2,\cdots, 2005 \}$ such that the sum of the elements of $B$ is congruent to $2006$ modulo $2048$
2017 District Olympiad, 3
Find
$$ \inf_{\substack{ n\ge 1 \\ a_1,\ldots ,a_n >0 \\ a_1+\cdots +a_n <\pi }} \left( \sum_{j=1}^n a_j\cos \left( a_1+a_2+\cdots +a_j \right)\right) . $$
2020 AMC 12/AHSME, 25
For each real number $a$ with $0 \leq a \leq 1$, let numbers $x$ and $y$ be chosen independently at random from the intervals $[0, a]$ and $[0, 1]$, respectively, and let $P(a)$ be the probability that
$$\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1.$$
What is the maximum value of $P(a)?$
$\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}$
1989 Flanders Math Olympiad, 2
When drawing all diagonals in a regular pentagon, one gets an smaller pentagon in the middle. What's the ratio of the areas of those pentagons?
2010 Estonia Team Selection Test, 5
Let $P(x, y)$ be a non-constant homogeneous polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for every real number $t$. Prove that there exists a positive integer $k$ such that $P(x, y) = (x^2 + y^2)^k$.
2004 AMC 10, 23
Circles $A$, $B$, and $C$ are externally tangent to each other and internally tangent to circle $D$. Circles $B$ and $C$ are congruent. Circle $A$ has radius 1 and passes through the center of $D$. What is the radius of circle $B$?
[asy]
size(200);
defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(Circle(origin, 2));
draw(Circle((-1,0), 1));
draw(Circle((6/9, 8/9), 8/9));
draw(Circle((6/9, -8/9), 8/9));
label("$A$", (-1.2, -0.2), NE);
label("$B$", (6/9, 7/9), N);
label("$C$", (6/9, -7/9), S);
label("$D$", 2*dir(110), dir(110));[/asy]
$ \textbf{(A)}\; \frac23\qquad
\textbf{(B)}\; \frac{\sqrt{3}}2\qquad
\textbf{(C)}\; \frac78\qquad
\textbf{(D)}\; \frac89\qquad
\textbf{(E)}\; \frac{1+\sqrt3}3 $