This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2013 IPhOO, 3

A rigid (solid) cylinder is put at the top of a frictionless $25^\circ$-to-the-horizontal incline that is $3.0 \, \text{m}$ high. It is then released so that it rolls down the incline. If $v$ is the speed at the bottom of the incline, what is $v^2$, in $\text{m}^2/\text{s}^2$? [i](B. Dejean and Ahaan Rungta, 3 points)[/i] [b]Note[/b]: Since there is no friction, the cylinder cannot roll, and thus the problem is flawed. Two answers were accepted and given full credit.

1980 IMO Shortlist, 1

Let $\alpha, \beta$ and $\gamma$ denote the angles of the triangle $ABC$. The perpendicular bisector of $AB$ intersects $BC$ at the point $X$, the perpendicular bisector of $AC$ intersects it at $Y$. Prove that $\tan(\beta) \cdot \tan(\gamma) = 3$ implies $BC= XY$ (or in other words: Prove that a sufficient condition for $BC = XY$ is $\tan(\beta) \cdot \tan(\gamma) = 3$). Show that this condition is not necessary, and give a necessary and sufficient condition for $BC = XY$.

2014 NIMO Problems, 3

Let $ABCD$ be a square with side length $2$. Let $M$ and $N$ be the midpoints of $\overline{BC}$ and $\overline{CD}$ respectively, and let $X$ and $Y$ be the feet of the perpendiculars from $A$ to $\overline{MD}$ and $\overline{NB}$, also respectively. The square of the length of segment $\overline{XY}$ can be written in the form $\tfrac pq$ where $p$ and $q$ are positive relatively prime integers. What is $100p+q$? [i]Proposed by David Altizio[/i]

2008 Singapore Team Selection Test, 1

Let $(O)$ be a circle, and let $ABP$ be a line segment such that $A,B$ lie on $(O)$ and $P$ is a point outside $(O)$. Let $C$ be a point on $(O)$ such that $PC$ is tangent to $(O)$ and let $D$ be the point on $(O)$ such that $CD$ is a diameter of $(O)$ and intersects $AB$ inside $(O)$. Suppose that the lines $DB$ and $OP$ intersect at $E$. Prove that $AC$ is perpendicular to $CE$.

2003 CHKMO, 1

Two circles meet at points $A$ and $B$. A line through $B$ intersects the first circle again at $K$ and the second circle at $M$. A line parallel to $AM$ is tangent to the first circle at $Q$. The line $AQ$ intersects the second circle again at $R$. $(a)$ Prove that the tangent to the second circle at $R$ is parallel to $AK$. $(b)$ Prove that these two tangents meet on $KM$.

1967 IMO Longlists, 4

Suppose, medians $m_a$ and $m_b$ of a triangle are orthogonal. Prove that: (a) The medians of the triangle correspond to the sides of a right-angled triangle. (b) If $a,b,c$ are the side-lengths of the triangle, then, the following inequality holds:\[5(a^2+b^2-c^2)\geq 8ab\]

2013 AIME Problems, 15

Tags: trigonometry
Let $A,B,C$ be angles of an acute triangle with \begin{align*} \cos^2 A + \cos^2 B + 2 \sin A \sin B \cos C &= \frac{15}{8} \text{ and} \\ \cos^2 B + \cos^2 C + 2 \sin B \sin C \cos A &= \frac{14}{9}. \end{align*} There are positive integers $p$, $q$, $r$, and $s$ for which \[ \cos^2 C + \cos^2 A + 2 \sin C \sin A \cos B = \frac{p-q\sqrt{r}}{s}, \] where $p+q$ and $s$ are relatively prime and $r$ is not divisible by the square of any prime. Find $p+q+r+s$. [i]Note: due to an oversight by the exam-setters, there is no acute triangle satisfying these conditions. You should instead assume $ABC$ is obtuse with $\angle B > 90^{\circ}$.[/i]

2013 Today's Calculation Of Integral, 885

Find the infinite integrals as follows. (1) 2013 Hiroshima City University entrance exam/Informatic Science $\int \frac{x^2}{2-x^2}dx$ (2) 2013 Kanseigakuin University entrance exam/Science and Technology $\int x^4\ln x\ dx$ (3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam $\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx$

2013 Iran MO (3rd Round), 5

Prove that there is no polynomial $P \in \mathbb C[x]$ such that set $\left \{ P(z) \; | \; \left | z \right | =1 \right \}$ in complex plane forms a polygon. In other words, a complex polynomial can't map the unit circle to a polygon. (30 points)

Today's calculation of integrals, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2009 Balkan MO Shortlist, G6

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

1981 IMO Shortlist, 11

On a semicircle with unit radius four consecutive chords $AB,BC, CD,DE$ with lengths $a, b, c, d$, respectively, are given. Prove that \[a^2 + b^2 + c^2 + d^2 + abc + bcd < 4.\]

2006 Harvard-MIT Mathematics Tournament, 8

Compute $\displaystyle\int_0^{\pi/3}x\tan^2(x)dx$.

2008 Iran MO (2nd Round), 3

In triangle $ABC$, $H$ is the foot of perpendicular from $A$ to $BC$. $O$ is the circumcenter of $\Delta ABC$. $T,T'$ are the feet of perpendiculars from $H$ to $AB,AC$, respectively. We know that $AC=2OT$. Prove that $AB=2OT'$.

2007 China National Olympiad, 1

Let $O, I$ be the circumcenter and incenter of triangle $ABC$. The incircle of $\triangle ABC$ touches $BC, CA, AB$ at points $D, E, F$ repsectively. $FD$ meets $CA$ at $P$, $ED$ meets $AB$ at $Q$. $M$ and $N$ are midpoints of $PE$ and $QF$ respectively. Show that $OI \perp MN$.

1988 IMO Shortlist, 23

Let $ Q$ be the centre of the inscribed circle of a triangle $ ABC.$ Prove that for any point $ P,$ \[ a(PA)^2 \plus{} b(PB)^2 \plus{} c(PC)^2 \equal{} a(QA)^2 \plus{} b(QB)^2 \plus{} c(QC)^2 \plus{} (a \plus{} b \plus{} c)(QP)^2, \] where $ a \equal{} BC, b \equal{} CA$ and $ c \equal{} AB.$

2006 South africa National Olympiad, 2

Triangle $ABC$ has $BC=1$ and $AC=2$. What is the maximum possible value of $\hat{A}$.

2013 Middle European Mathematical Olympiad, 6

Let $K$ be a point inside an acute triangle $ ABC $, such that $ BC $ is a common tangent of the circumcircles of $ AKB $ and $ AKC$. Let $ D $ be the intersection of the lines $ CK $ and $ AB $, and let $ E $ be the intersection of the lines $ BK $ and $ AC $ . Let $ F $ be the intersection of the line $BC$ and the perpendicular bisector of the segment $DE$. The circumcircle of $ABC$ and the circle $k$ with centre $ F$ and radius $FD$ intersect at points $P$ and $Q$. Prove that the segment $PQ$ is a diameter of $k$.

2002 Federal Math Competition of S&M, Problem 3

Let $ ABCD$ be a rhombus with $ \angle BAD \equal{} 60^{\circ}$. Points $ S$ and $ R$ are chosen inside the triangles $ ABD$ and $ DBC$, respectively, such that $ \angle SBR \equal{} \angle RDS \equal{} 60^{\circ}$. Prove that $ SR^2\geq AS\cdot CR$.

2011 Today's Calculation Of Integral, 755

Given mobile points $P(0,\ \sin \theta),\ Q(8\cos \theta,\ 0)\ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ on the $x$-$y$ plane. Denote by $D$ the part in which line segment $PQ$ sweeps. Find the volume $V$ generated by a rotation of $D$ around the $x$-axis.

Oliforum Contest II 2009, 2

Let a convex quadrilateral $ ABCD$ fixed such that $ AB \equal{} BC$, $ \angle ABC \equal{} 80, \angle CDA \equal{} 50$. Define $ E$ the midpoint of $ AC$; show that $ \angle CDE \equal{} \angle BDA$ [i](Paolo Leonetti)[/i]

2003 India Regional Mathematical Olympiad, 1

Let $ABC$ be a triangle in which $AB =AC$ and $\angle CAB = 90^{\circ}$. Suppose that $M$ and $N$ are points on the hypotenuse $BC$ such that $BM^2 + CN^2 = MN^2$. Prove that $\angle MAN = 45^{\circ}$.

1961 IMO, 5

Construct a triangle $ABC$ if $AC=b$, $AB=c$ and $\angle AMB=w$, where $M$ is the midpoint of the segment $BC$ and $w<90$. Prove that a solution exists if and only if \[ b \tan{\dfrac{w}{2}} \leq c <b \] In what case does the equality hold?

2014 Singapore Senior Math Olympiad, 19

Tags: trigonometry
In a triangle $\triangle ABC$ it is given that $(\sin A+\sin B):(\sin B+\sin C):(\sin C+\sin A)=9:10:11$. Find the value of $480\cos A$

2005 Today's Calculation Of Integral, 22

Evaluate \[\int_0^1 (1-x^2)^n dx\ (n=0,1,2,\cdots)\]