This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 560

2009 Miklós Schweitzer, 7

Let $ H$ be an arbitrary subgroup of the diffeomorphism group $ \mathsf{Diff}^\infty(M)$ of a differentiable manifold $ M$. We say that an $ \mathcal C^\infty$-vector field $ X$ is [i]weakly tangent[/i] to the group $ H$, if there exists a positive integer $ k$ and a $ \mathcal C^\infty$-differentiable map $ \varphi \mathrel{: } \mathord{]} \minus{} \varepsilon,\varepsilon\mathord{[}^k\times M\to M$ such that (i) for fixed $ t_1,\dots,t_k$ the map \[ \varphi_{t_1,\dots,t_k} : x\in M\mapsto \varphi(t_1,\dots,t_k,x)\] is a diffeomorphism of $ M$, and $ \varphi_{t_1,\dots,t_k}\in H$; (ii) $ \varphi_{t_1,\dots,t_k}\in H \equal{} \mathsf{Id}$ whenever $ t_j \equal{} 0$ for some $ 1\leq j\leq k$; (iii) for any $ \mathcal C^\infty$-function $ f: M\to \mathbb R$ \[ X f \equal{} \left.\frac {\partial^k(f\circ\varphi_{t_1,\dots,t_k})}{\partial t_1\dots\partial t_k}\right|_{(t_1,\dots,t_k) \equal{} (0,\dots,0)}.\] Prove, that the commutators of $ \mathcal C^\infty$-vector fields that are weakly tangent to $ H\subset \textsf{Diff}^\infty(M)$ are also weakly tangent to $ H$.

1995 IMC, 7

Let $A$ be a $3\times 3$ real matrix such that the vectors $Au$ and $u$ are orthogonal for every column vector $u\in \mathbb{R}^{3}$. Prove that: a) $A^{T}=-A$. b) there exists a vector $v \in \mathbb{R}^{3}$ such that $Au=v\times u$ for every $u\in \mathbb{R}^{3}$, where $v \times u$ denotes the vector product in $\mathbb{R}^{3}$.

VMEO I 2004, 4

In a quadrilateral $ABCD$ let $E$ be the intersection of the two diagonals, I the center of the parallelogram whose vertices are the midpoints of the four sides of the quadrilateral, and K the center of the parallelogram whose sides pass through the points. divide the four sides of the quadrilateral into three equal parts (see illustration ). [img]https://cdn.artofproblemsolving.com/attachments/1/c/8f2617103edd8361b8deebbee13c6180fa848b.png[/img] a) Prove that $\overrightarrow{EK} =\frac43 \overrightarrow{EI}$. b) Prove that $$\lambda_A \overrightarrow{KA} +\lambda_B \overrightarrow{KB} + \lambda_C \overrightarrow{KC} + \lambda_D \overrightarrow{KD} = \overrightarrow{0}$$ , where $$\lambda_A=1+\frac{S(ADB)}{S(ABCD)},\lambda_B=1+\frac{S(BCA)}{S(ABCD)},\lambda_C=1+\frac{S(CDB)}{S(ABCD)},\lambda_D=1+\frac{S(DAC)}{S(ABCD)}$$ , where $S$ is the area symbol.

2014 USAJMO, 6

Let $ABC$ be a triangle with incenter $I$, incircle $\gamma$ and circumcircle $\Gamma$. Let $M,N,P$ be the midpoints of sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ and let $E,F$ be the tangency points of $\gamma$ with $\overline{CA}$ and $\overline{AB}$, respectively. Let $U,V$ be the intersections of line $EF$ with line $MN$ and line $MP$, respectively, and let $X$ be the midpoint of arc $BAC$ of $\Gamma$. (a) Prove that $I$ lies on ray $CV$. (b) Prove that line $XI$ bisects $\overline{UV}$.

2020 Miklós Schweitzer, 3

An $n\times n$ matrix $A$ with integer entries is called [i]representative[/i] if, for any integer vector $\mathbf{v}$, there is a finite sequence $0=\mathbf{v}_0,\mathbf{v}_1,\dots,\mathbf{v}_{\ell}=\mathbf{v}$ of integer vectors such that for each $0\leq i <\ell$, either $\mathbf{v}_{i+1}=A\mathbf{v}_{i}$ or $\mathbf{v}_{i+1}-\mathbf{v}_i$ is an element of the standard basis (i.e. one of its entries is $1$, the rest are all equal to $0$). Show that $A$ is not representative if and only if $A^T$ has a real eigenvector with all non-negative entries and non-negative eigenvalue.

2006 District Olympiad, 1

On the plane of triangle $ABC$ with $\angle BAC = 90^\circ$ we raise perpendicular lines in $A$ and $B$, on the same side of the plane. On these two perpendicular lines we consider the points $M$ and $N$ respectively such that $BN < AM$. Knowing that $AC = 2a$, $AB = a\sqrt 3$, $AM=a$ and that the plane $MNC$ makes an angle of $30^\circ$ with the plane $ABC$ find a) the area of the triangle $MNC$; b) the distance from $B$ to the plane $MNC$.

1993 India Regional Mathematical Olympiad, 7

Tags: vector
In the group of ten persons, each person is asked to write the sum of the ages of all the other nine persons. Of all ten sums form the nine-element set $\{ 82, 83,84,85,87,89,90,91,92 \}$, find the individual ages of the persons, assuming them to be whole numbers.

2007 Romania National Olympiad, 3

Let $n\geq 2$ be an integer and denote by $H_{n}$ the set of column vectors $^{T}(x_{1},\ x_{2},\ \ldots, x_{n})\in\mathbb{R}^{n}$, such that $\sum |x_{i}|=1$. Prove that there exist only a finite number of matrices $A\in\mathcal{M}_{n}(\mathbb{R})$ such that the linear map $f: \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ given by $f(x)=Ax$ has the property $f(H_{n})=H_{n}$. [hide="Comment"]In the contest, the problem was given with a) and b): a) Prove the above for $n=2$; b) Prove the above for $n\geq 3$ as well.[/hide]

2002 National High School Mathematics League, 7

Complex numbers $|z_1|=2,|z_2|=3$, and the intersection angle between the vectors corresponding to $z_1,z_2$ is $60^{\circ}$, then $\frac{|z_1+z_2|}{|z_1-z_2|}=$________.

1987 Vietnam National Olympiad, 3

Prove that among any five distinct rays $ Ox$, $ Oy$, $ Oz$, $ Ot$, $ Or$ in space there exist two which form an angle less than or equal to $ 90^{\circ}$.

1990 Greece National Olympiad, 2

Tags: geometry , vector , fixed
Let $ACBD$ be a asquare and $K,L,M,N$ be points of $AB,BC,CD,DA$ respectively. If $O$ is the center of the square , prove that the expression $$ \overrightarrow{OK}\cdot \overrightarrow{OL}+\overrightarrow{OL}\cdot\overrightarrow{OM}+\overrightarrow{OM}\cdot\overrightarrow{ON}+\overrightarrow{ON}\cdot\overrightarrow{OK}$$ is independent of positions of $K,L,M,N$, (i.e. is constant )

1995 Iran MO (2nd round), 1

Prove that for every positive integer $n \geq 3$ there exist two sets $A =\{ x_1, x_2,\ldots, x_n\}$ and $B =\{ y_1, y_2,\ldots, y_n\}$ for which [b]i)[/b] $A \cap B = \varnothing.$ [b]ii)[/b] $x_1+ x_2+\cdots+ x_n= y_1+ y_2+\cdots+ y_n.$ [b]ii)[/b] $x_1^2+ x_2^2+\cdots+ x_n^2= y_1^2+ y_2^2+\cdots+ y_n^2.$

2011 District Olympiad, 1

On the sides $ AB,BC,CD,DA $ of the parallelogram $ ABCD, $ consider the points $ M,N,P, $ respectively, $ Q, $ such that $ \overrightarrow{MN} +\overrightarrow{QP} =\overrightarrow{AC} . $ Show that $ \overrightarrow{PN} +\overrightarrow{QM} = \overrightarrow{DB} . $

2011 Paraguay Mathematical Olympiad, 2

In a triangle $ABC$, let $D$ and $E$ be the midpoints of $AC$ and $BC$ respectively. The distance from the midpoint of $BD$ to the midpoint of $AE$ is $4.5$. What is the length of side $AB$?

1976 All Soviet Union Mathematical Olympiad, 225

Given $4$ vectors $a,b,c,d$ in the plane, such that $a+b+c+d=0$. Prove the following inequality: $$|a|+|b|+|c|+|d| \ge |a+d|+|b+d|+|c+d|$$

1962 IMO Shortlist, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

1987 IMO Longlists, 30

Consider the regular $1987$-gon $A_1A_2 . . . A_{1987}$ with center $O$. Show that the sum of vectors belonging to any proper subset of $M = \{OA_j | j = 1, 2, . . . , 1987\}$ is nonzero.

2021 Alibaba Global Math Competition, 18

Let $p$ be an odd prime number, and let $m \ge 0$ and $N \ge 1$ be integers. Let $\Lambda$ be a free $\mathbb{Z}/p^N\mathbb{Z}$-module of rank $2m+1$, equipped with a perfect symmetric $\mathbb{Z}/p^N\mathbb{Z}$-bilinear form \[(\, ,\,): \Lambda \times \Lambda \to \mathbb{Z}/p^N\mathbb{Z}.\] Here ``perfect'' means that the induced map \[\Lambda \to \text{Hom}_{\mathbb{Z}/p^N\mathbb{Z}}(\Lambda, \mathbb{Z}/p^N\mathbb{Z}), \quad x \mapsto (x,\cdot)\] is an isomorphism. Find the cardinality of the set \[\{x \in \Lambda: (x,x)=0\},\] expressed in terms of $p,m,N$.

2008 USAMO, 5

Three nonnegative real numbers $ r_1$, $ r_2$, $ r_3$ are written on a blackboard. These numbers have the property that there exist integers $ a_1$, $ a_2$, $ a_3$, not all zero, satisfying $ a_1r_1 \plus{} a_2r_2 \plus{} a_3r_3 \equal{} 0$. We are permitted to perform the following operation: find two numbers $ x$, $ y$ on the blackboard with $ x \le y$, then erase $ y$ and write $ y \minus{} x$ in its place. Prove that after a finite number of such operations, we can end up with at least one $ 0$ on the blackboard.

2003 AIME Problems, 13

A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

2011 South East Mathematical Olympiad, 2

Let $P_i$ $i=1,2,......n$ be $n$ points on the plane , $M$ is a point on segment $AB$ in the same plane , prove : $\sum_{i=1}^{n} |P_iM| \le \max( \sum_{i=1}^{n} |P_iA| , \sum_{i=1}^{n} |P_iB| )$. (Here $|AB|$ means the length of segment $AB$) .

2014 IMS, 10

Let $V$ be a $n-$dimensional vector space over a field $F$ with a basis $\{e_1,e_2, \cdots ,e_n\}$.Prove that for any $m-$dimensional linear subspace $W$ of $V$, the number of elements of the set $W \cap P$ is less than or equal to $2^m$ where $P=\{\lambda_1e_1 + \lambda_2e_2 + \cdots + \lambda_ne_n : \lambda_i=0,1\}$.

1986 All Soviet Union Mathematical Olympiad, 434

Tags: geometry , vector , polygon
Given a regular $n$-gon $A_1A_2...A_n$. Prove that if a) $n$ is even number, than for the arbitrary point $M$ in the plane, it is possible to choose signs in an expression $$\pm \overrightarrow{MA_1} \pm \overrightarrow{MA_2} \pm ... \pm \overrightarrow{MA_n}$$to make it equal to the zero vector . b) $n$ is odd, than the abovementioned expression equals to the zero vector for the finite set of $M$ points only.

1998 Dutch Mathematical Olympiad, 4

Tags: geometry , rhombus , vector
Let $ABCD$ be a convex quadrilateral such that $AC \perp BD$. (a) Prove that $AB^2 + CD^2 = BC^2 + DA^2$. (b) Let $PQRS$ be a convex quadrilateral such that $PQ = AB$, $QR = BC$, $RS = CD$ and $SP = DA$. Prove that $PR \perp QS$.

2012 China Team Selection Test, 2

Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression \[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]