This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 AMC 12-AHSME, 21

The graph of the polynomial \[P(x) \equal{} x^5 \plus{} ax^4 \plus{} bx^3 \plus{} cx^2 \plus{} dx \plus{} e\] has five distinct $ x$-intercepts, one of which is at $ (0,0)$. Which of the following coefficients cannot be zero? $ \textbf{(A)}\ a \qquad \textbf{(B)}\ b \qquad \textbf{(C)}\ c \qquad \textbf{(D)}\ d \qquad \textbf{(E)}\ e$

2021 South East Mathematical Olympiad, 7

Determine all the pairs of positive odd integers $(a,b),$ such that $a,b>1$ and $$7\varphi^2(a)-\varphi(ab)+11\varphi^2(b)=2(a^2+b^2),$$ where $\varphi(n)$ is Euler's totient function.

2002 South africa National Olympiad, 4

How many ways are there to express 1000000 as a product of exactly three integers greater than 1? (For the purpose of this problem, $abc$ is not considered different from $bac$, etc.)

2023 OMpD, 2

Let $C$ be a fixed circle, $u > 0$ be a fixed real and let $v_0 , v_1 , v_2 , \ldots$ be a sequence of positive real numbers. Two ants $A$ and $B$ walk around the perimeter of $C$ in opposite directions, starting from the same starting point. Ant $A$ has a constant speed $u$, while ant $B$ has an initial speed $v_0$. For each positive integer $n$, when the two ants collide for the $n$−th time, they change the directions in which they walk around the perimeter of $C$, with ant $A$ remaining at speed $u$ and ant $B$ stops walking at speed $v_{n-1}$ to walk at speed $v_n$. (a) If the sequence $\{v_n\}$ is strictly increasing, with $\lim_{n\rightarrow \infty} v_n = +\infty$, prove that there is exactly one point in $C$ that ant $A$ will pass "infinitely" many times. (b) Prove that there is a sequence $\{v_n\}$ with $\lim_{n\rightarrow\infty} v_n = +\infty$, such that ant $A$ will pass "infinitely" many times through all points on the circle $C$.

2009 Princeton University Math Competition, 6

Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the [i]square[/i] of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).

2018 Online Math Open Problems, 5

Tags:
In triangle $ABC$, $AB=8, AC=9,$ and $BC=10$. Let $M$ be the midpoint of $BC$. Circle $\omega_1$ with area $A_1$ passes through $A,B,$ and $C$. Circle $\omega_2$ with area $A_2$ passes through $A,B,$ and $M$. Then $\frac{A_1}{A_2}=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m+n$. [i]Proposed by Luke Robitaille[/i]

1985 IMO Longlists, 23

Let $\mathbb N = {1, 2, 3, . . .}$. For real $x, y$, set $S(x, y) = \{s | s = [nx+y], n \in \mathbb N\}$. Prove that if $r > 1$ is a rational number, there exist real numbers $u$ and $v$ such that \[S(r, 0) \cap S(u, v) = \emptyset, S(r, 0) \cup S(u, v) = \mathbb N.\]

2007 ITest, 18

Tags: vieta , quadratic
Suppose that $x^3+px^2+qx+r$ is a cubic with a double root at $a$ and another root at $b$, where $a$ and $b$ are real numbers. If $p=-6$ and $q=9$, what is $r$? $\textbf{(A) }0\hspace{20.2em}\textbf{(B) }4$ $\textbf{(C) }108\hspace{19.3em}\textbf{(D) }\text{It could be 0 or 4.}$ $\textbf{(E) }\text{It could be 0 or 108.}\hspace{12em}\textbf{(F) }18$ $\textbf{(G) }-4\hspace{19em}\textbf{(H) } -108$ $\textbf{(I) }\text{It could be 0 or }-4.\hspace{12em}\textbf{(J) }\text{It could be 0 or }-108.$ $\textbf{(K) }\text{It could be 4 or }-4.\hspace{11.5em}\textbf{(L) }\text{There is no such value of }r.$ $\textbf{(M) }1\hspace{20em}\textbf{(N) }-2$ $\textbf{(O) }\text{It could be }-2\text{ or }-4.\hspace{10.3em}\textbf{(P) }\text{It could be 0 or }-2.$ $\textbf{(Q) }\text{It could be 2007 or a yippy dog.}\hspace{6.6em}\textbf{(R) }2007$

2023 JBMO Shortlist, N6

[b]Version 1.[/b] Find all primes $p$ satisfying the following conditions: (i) $\frac{p+1}{2}$ is a prime number. (ii) There are at least three distinct positive integers $n$ for which $\frac{p^2+n}{p+n^2}$ is an integer. [b]Version 2.[/b] Let $p \neq 5$ be a prime number such that $\frac{p+1}{2}$ is also a prime. Suppose there exist positive integers $a <b$ such that $\frac{p^2+a}{p+a^2}$ and $\frac{p^2+b}{p+b^2}$ are integers. Show that $b=(a-1)^2+1$.

2006 Taiwan TST Round 1, 2

Tags: function , algebra
Let $\mathbb{N}$ be the set of all positive integers. The function $f: \mathbb{N} \to \mathbb{N}$ satisfies $f(1)=3, f(mn)=f(m)f(n)-f(m+n)+2$ for all $m,n \in \mathbb{N}$. Prove that $f$ does not exist. Comment: The original problem asked for the value of $f(2006)$, which obviously does not exist when $f$ does not. This was probably a mistake by the Olympiad committee. Hence the modified problem.

2012 Olympic Revenge, 2

We define $(x_1, x_2, \ldots , x_n) \Delta (y_1, y_2, \ldots , y_n) = \left( \sum_{i=1}^{n}x_iy_{2-i}, \sum_{i=1}^{n}x_iy_{3-i}, \ldots , \sum_{i=1}^{n}x_iy_{n+1-i} \right)$, where the indices are taken modulo $n$. Besides this, if $v$ is a vector, we define $v^k = v$, if $k=1$, or $v^k = v \Delta v^{k-1}$, otherwise. Prove that, if $(x_1, x_2, \ldots , x_n)^k = (0, 0, \ldots , 0)$, for some natural number $k$, then $x_1 = x_2 = \ldots = x_n = 0$.

2012 ISI Entrance Examination, 7

Tags: ellipse , conic , geometry
Let $\Gamma_1,\Gamma_2$ be two circles centred at the points $(a,0),(b,0);0<a<b$ and having radii $a,b$ respectively.Let $\Gamma$ be the circle touching $\Gamma_1$ externally and $\Gamma_2$ internally. Find the locus of the centre of of $\Gamma$

2008 Turkey MO (2nd round), 3

There is a connected network with $ 2008$ computers, in which any of the two cycles don't have any common vertex. A hacker and a administrator are playing a game in this network. On the $ 1st$ move hacker selects one computer and hacks it, on the $ 2nd$ move administrator selects another computer and protects it. Then on every $ 2k\plus{}1th$ move hacker hacks one more computer(if he can) which wasn't protected by the administrator and is directly connected (with an edge) to a computer which was hacked by the hacker before and on every $ 2k\plus{}2th$ move administrator protects one more computer(if he can) which wasn't hacked by the hacker and is directly connected (with an edge) to a computer which was protected by the administrator before for every $ k>0$. If both of them can't make move, the game ends. Determine the maximum number of computers which the hacker can guarantee to hack at the end of the game.

Kvant 2021, M2676

Tags: geometry
Let $ABCD$ be a parallelogram and let $P{}$ be a point inside it such that $\angle PDA= \angle PBA$. Let $\omega_1$ be the excircle of $PAB$ opposite to the vertex $A{}$. Let $\omega_2$ be the incircle of the triangle $PCD$. Prove that one of the common tangents of $\omega_1$ and $\omega_2$ is parallel to $AD$. [i]Ivan Frolov[/i]

2003 Moldova National Olympiad, 10.1

Find all prime numbers $ a,b,c$ that fulfill the equality: $ (a\minus{}2)!\plus{}2b!\equal{}22c\minus{}1$

2009 Princeton University Math Competition, 3

Tags:
How many strings of ones and zeroes of length 10 are there such that there is an even number of ones, and no zero follows another zero?

2019 LIMIT Category B, Problem 8

Given a regular polygon with $p$ sides, where $p$ is a prime number. After rotating this polygon about its center by an integer number of degrees it coincides with itself. What is the maximal possible number for $p$?

2020 Stars of Mathematics, 4

Let $a_0 = 1, \ a_1 = 2,$ and $a_2 = 10,$ and define $a_{k+2} = a_{k+1}^3+a_k^2+a_{k-1}$ for all positive integers $k.$ Is it possible for some $a_x$ to be divisible by $2021^{2021}?$ [i]Flavian Georgescu[/i]

2003 JHMMC 8, 20

Tags: basic pie
How many positive whole numbers less than $100$ are divisible by $3$, but not by $2$?

2007 Germany Team Selection Test, 1

We have $ n \geq 2$ lamps $ L_{1}, . . . ,L_{n}$ in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp $ L_{i}$ and its neighbours (only one neighbour for $ i \equal{} 1$ or $ i \equal{} n$, two neighbours for other $ i$) are in the same state, then $ L_{i}$ is switched off; – otherwise, $ L_{i}$ is switched on. Initially all the lamps are off except the leftmost one which is on. $ (a)$ Prove that there are infinitely many integers $ n$ for which all the lamps will eventually be off. $ (b)$ Prove that there are infinitely many integers $ n$ for which the lamps will never be all off.

DMM Individual Rounds, 2010

[b]p1.[/b] Ana, Bob, Cho, Dan, and Eve want to use a microwave. In order to be fair, they choose a random order to heat their food in (all orders have equal probability). Ana's food needs $5$ minutes to cook, Bob's food needs $7$ minutes, Cho's needs $1$ minute, Dan's needs $12$ minutes, and Eve's needs $5$ minutes. What is the expected number of minutes Bob has to wait for his food to be done? [b]p2.[/b] $ABC$ is an equilateral triangle. $H$ lies in the interior of $ABC$, and points $X$, $Y$, $Z$ lie on sides $AB, BC, CA$, respectively, such that $HX\perp AB$, $HY \perp BC$, $HZ\perp CA$. Furthermore, $HX =2$, $HY = 3$, $HZ = 4$. Find the area of triangle $ABC$. [b]p3.[/b] Amy, Ben, and Chime play a dice game. They each take turns rolling a die such that the $first$ person to roll one of his favorite numbers wins. Amy's favorite number is $1$, Ben's favorite numbers are $2$ and $3$, and Chime's are $4$, $5$, and $6$. Amy rolls first, Ben rolls second, and Chime rolls third. If no one has won after Chime's turn, they repeat the sequence until someone has won. What's the probability that Chime wins the game? [b]p4.[/b] A point $P$ is chosen randomly in the interior of a square $ABCD$. What is the probability that the angle $\angle APB$ is obtuse? [b]p5.[/b] Let $ABCD$ be the quadrilateral with vertices $A = (3, 9)$, $B = (1, 1)$, $C = (5, 3)$, and $D = (a, b)$, all of which lie in the first quadrant. Let $M$ be the midpoint of $AB$, $N$ the midpoint of $BC$, $O$ the midpoint of $CD$, and $P$ the midpoint of $AD$. If $MNOP$ is a square, find $(a, b)$. [b]p6.[/b] Let $M$ be the number of positive perfect cubes that divide $60^{60}$. What is the prime factorization of $M$? [b]p7.[/b] Given that $x$, $y$, and $z$ are complex numbers with $|x|=|y| =|z|= 1$, $x + y + z = 1$ and $xyz = 1$, find $|(x + 2)(y + 2)(z + 2)|$. [b]p8.[/b] If $f(x)$ is a polynomial of degree $2008$ such that $f(m) = \frac{1}{m}$ for $m = 1, 2, ..., 2009$, find $f(2010)$. [b]p9.[/b] A drunkard is randomly walking through a city when he stumbles upon a $2 \times 2$ sliding tile puzzle. The puzzle consists of a $2 \times 2$ grid filled with a blank square, as well as $3$ square tiles, labeled $1$, $2$, and $3$. During each turn you may fill the empty square by sliding one of the adjacent tiles into it. The following image shows the puzzle's correct state, as well as two possible moves you can make: [img]https://cdn.artofproblemsolving.com/attachments/c/6/7ddd9305885523deeee2a530dc90505875d1cc.png[/img] Assuming that the puzzle is initially in an incorrect (but solvable) state, and that the drunkard will make completely random moves to try and solve it, how many moves is he expected to make before he restores the puzzle to its correct state? [b]p10.[/b] How many polynomials $p(x)$ exist such that the coeffients of $p(x)$ are a rearrangement of $\{0, 1, 2, .., deg \, p(x)\}$ and all of the roots of $p(x)$ are rational? (Note that the leading coefficient of $p(x)$ must be nonzero.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 HMNT, 33

Tags: guts
A grid is called [i]groovy[/i] if each cell of the grid is labeled with the smallest positive integer that does not appear below it in the same column or to the left of it in the same row. Compute the sum of the entries of a groovy $14 \times 14$ grid whose bottom left entry is $1.$

2020 MIG, 7

Tags:
John's digital clock is broken. It scrambles the digits of the time and displays them in a random order. For example, if the current time is $4:21$, it could display $4:12$, $2:14$, or any other reordering of $4$, $1$, and $2$. If his clock reads $6:71$ one morning, how many possibilities are there for the correct time? $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }6$

2008 Moldova Team Selection Test, 3

Let $ \Gamma(I,r)$ and $ \Gamma(O,R)$ denote the incircle and circumcircle, respectively, of a triangle $ ABC$. Consider all the triangels $ A_iB_iC_i$ which are simultaneously inscribed in $ \Gamma(O,R)$ and circumscribed to $ \Gamma(I,r)$. Prove that the centroids of these triangles are concyclic.

2014 Peru Iberoamerican Team Selection Test, P4

Tags: algebra
Determine the minimum value of $$x^{2014} + 2x^{2013} + 3x^{2012} + 4x^{2011} +\ldots + 2014x + 2015$$ where $x$ is a real number.