This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 India IMO Training Camp, 3

A set of $n$ distinct integer weights $w_1,w_2,\ldots, w_n$ is said to be [i]balanced[/i] if after removing any one of weights, the remaining $(n-1)$ weights can be split into two subcollections (not necessarily with equal size)with equal sum. $a)$ Prove that if there exist [i]balanced[/i] sets of sizes $k,j$ then also a [i]balanced[/i] set of size $k+j-1$. $b)$ Prove that for all [i]odd[/i] $n\geq 7$ there exist a [i]balanced[/i] set of size $n$.

1999 Hong kong National Olympiad, 2

Let $I$ be the incentre and $O$ the circumcentre of a non-equilateral triangle $ABC$. Prove that $\angle AIO \le 90^{\circ}$ if and only if $2BC\le AB+AC$.

2016 Israel Team Selection Test, 3

On each square of an $n$x$n$ board sleeps a dragon. Two dragons are called neighbors if their squares have a side in common. Each turn, Minnie wakes up a dragon which has a living neighbor and Max directs it towards one of its living neighbors. The dragon than breathes fire on that neighbor and destroys it, and then goes back to sleep. Minnie's goal is to minimize the snoring of the dragons and leave as few living dragons as possible. Max is a member of PETD (People for the Ethical Treatment of Dragons), and he wants to save as many dragons as he can. How many dragons will stay alive at the end if 1. $n=4$? 2. $n=5$?

2013 Princeton University Math Competition, 2

What is the smallest positive integer $n$ such that $2013^n$ ends in $001$ (i.e. the rightmost three digits of $2013^n$ are $001$?

2012 Abels Math Contest (Norwegian MO) Final, 2

(a)Two circles $S_1$ and $S_2$ are placed so that they do not overlap each other, neither completely nor partially. They have centres in $O_1$ and $O_2$, respectively. Further, $L_1$ and $M_1$ are different points on $S_1$ so that $O_2L_1$ and $O_2M_1$ are tangent to $S_1$, and similarly $L_2$ and $M_2$ are different points on $S_2$ so that $O_1L_2$ and $O_1M_2$ are tangent to $S_2$. Show that there exists a unique circle which is tangent to the four line segments $O_2L_1, O_2M_1, O_1L_2$, and $O_1M_2$. (b) Four circles $S_1, S_2, S_3$ and $S_4$ are placed so that none of them overlap each other, neither completely nor partially. They have centres in $O_1, O_2, O_3$, and $O_4$, respectively. For each pair $(S_i, S_j )$ of circles, with $1 \le i < j \le 4$, we find a circle $S_{ij}$ as in part [b]a[/b]. The circle $S_{ij}$ has radius $R_{ij}$ . Show that $\frac{1}{R_{12}} + \frac{1}{R_{23}}+\frac{1}{R_{34}}+\frac{1}{R_{14}}= 2 \left(\frac{1}{R_{13}} +\frac{1}{R_{24}}\right)$

2024/2025 TOURNAMENT OF TOWNS, P5

A rectangular checkered board is painted black and white as a chessboard, and is tiled by dominoes $1 \times 2$. If a horizontal and a vertical dominoes have common segment, it has a door which has the color of the adjoining cell of the domino adjacent by a short side. Is it necessarily true that the number of white doors equals the number of black doors?

2013 AMC 10, 2

Tags:
Alice is making a batch of cookies and needs $2 \frac{1}{2}$ cups of sugar. Unforunately, her measuring cup holds only $\frac{1}{4}$ cup of sugar. How many times must she fill that cup to get the correct amount of sugar? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 16 \qquad\textbf{(E)}\ 20$

2011 Belarus Team Selection Test, 2

Do they exist natural numbers $m,x,y$ such that $$m^2 +25 \vdots (2011^x-1007^y) ?$$ S. Finskii

2022 Kosovo National Mathematical Olympiad, 4

Find all positive integers $k,m$ and $n$ such that $k!+3^m=3^n$

2008 District Olympiad, 4

Let be a finite field $ K. $ Say that two polynoms $ f,g $ from $ K[X] $ are [i]neighbours,[/i] if the have the same degree and they differ by exactly one coefficient. [b]a)[/b] Show that all the neighbours of $ 1+X^2 $ from $ \mathbb{Z}_3[X] $ are reducible in $ \mathbb{Z}_3[X] . $ [b]b)[/b] If $ |K|\ge 4, $ show that any polynomial of degree $ |K|-1 $ from $ K[X] $ has a neighbour from $ K[X] $ that is reducible in $ K[X] , $ and also has a neighbour that doesn´t have any root in $ K. $

2009 China Western Mathematical Olympiad, 1

Let $M$ be the set of the real numbers except for finitely many elements. Prove that for every positive integer $n$ there exists a polynomial $f(x)$ with $\deg f = n$, such that all the coefficients and the $n$ real roots of $f$ are all in $M$.

2005 Indonesia MO, 3

Let $ k$ and $ m$ be positive integers such that $ \displaystyle\frac12\left(\sqrt{k\plus{}4\sqrt{m}}\minus{}\sqrt{k}\right)$ is an integer. (a) Prove that $ \sqrt{k}$ is rational. (b) Prove that $ \sqrt{k}$ is a positive integer.

1979 IMO Longlists, 54

Consider the sequences $(a_n), (b_n)$ defined by \[a_1=3, \quad b_1=100 , \quad a_{n+1}=3^{a_n} , \quad b_{n+1}=100^{b_n} \] Find the smallest integer $m$ for which $b_m > a_{100}.$

1966 IMO Shortlist, 62

Solve the system of equations \[ |a_1-a_2|x_2+|a_1-a_3|x_3+|a_1-a_4|x_4=1 \] \[ |a_2-a_1|x_1+|a_2-a_3|x_3+|a_2-a_4|x_4=1 \] \[ |a_3-a_1|x_1+|a_3-a_2|x_2+|a_3-a_4|x_4=1 \] \[ |a_4-a_1|x_1+|a_4-a_2|x_2+|a_4-a_3|x_3=1 \] where $a_1, a_2, a_3, a_4$ are four different real numbers.

2022 Azerbaijan JBMO TST, A2

For positive real numbers $a,b,c$, $\frac{1}{a}+\frac{1}{b} + \frac{1}{c} \ge \frac{3}{abc}$ is true. Prove that: $$ \frac{a^2+b^2}{a^2+b^2+1}+\frac{b^2+c^2}{b^2+c^2+1}+\frac{c^2+a^2}{c^2+a^2+1} \ge 2$$

PEN E Problems, 11

In 1772 Euler discovered the curious fact that $n^2 +n+41$ is prime when $n$ is any of $0,1,2, \cdots, 39$. Show that there exist $40$ consecutive integer values of $n$ for which this polynomial is not prime.

1998 All-Russian Olympiad Regional Round, 10.7

A cube of side length $n$ is divided into unit cubes by [i]partitions[/i] (each [i]partition[/i] separates a pair of adjacent unit cubes). What is the smallest number of [i]partitions[/i] that can be removed so that from each cube, one can reach the surface of the cube without passing through a partition ?

1977 IMO Longlists, 5

A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.

2014 USAMO, 6

Prove that there is a constant $c>0$ with the following property: If $a, b, n$ are positive integers such that $\gcd(a+i, b+j)>1$ for all $i, j\in\{0, 1, \ldots n\}$, then\[\min\{a, b\}>c^n\cdot n^{\frac{n}{2}}.\]

2008 National Olympiad First Round, 30

Tags:
In a sequence with the first term is positive integer, the next term is generated by adding the previous term and its largest digit. At most how many consequtive terms of this sequence are odd? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 6 $

1981 IMO Shortlist, 10

Determine the smallest natural number $n$ having the following property: For every integer $p, p \geq n$, it is possible to subdivide (partition) a given square into $p$ squares (not necessarily equal).

2016 239 Open Mathematical Olympiad, 3

A regular hexagon with a side of $50$ was divided to equilateral triangles with unit side, parallel to the sides of the hexagon. It is allowed to delete any three nodes of the resulting lattice defining a segment of length $2$. As a result of several such operations, exactly one node remains. How many ways is this possible?

2006 Putnam, B1

Show that the curve $x^{3}+3xy+y^{3}=1$ contains only one set of three distinct points, $A,B,$ and $C,$ which are the vertices of an equilateral triangle.

2008 ISI B.Math Entrance Exam, 4

Let $a_1,a_2,...,a_n$ be integers . Show that there exists integers $k$ and $r$ such that the sum $a_k+a_{k+1}+...+a_{k+r}$ is divisible by $n$ .

2016 China Northern MO, 2

Tags: geometry
In isosceles triangle $ABC$, $\angle CAB=\angle CBA=\alpha$, points $P,Q$ are on different sides of line $AB$, and $\angle CAP=\angle ABQ=\beta,\angle CBP=\angle BAQ=\gamma$. Prove that $P,C,Q$ are colinear.