This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 National High School Mathematics League, 4

Tags: trigonometry
If $x\in\left[-\frac{5\pi}{12},-\frac{\pi}{3}\right]$, then the maximum value of $y=\tan\left(x+\frac{2\pi}{3}\right)-\tan\left(x+\frac{\pi}{6}\right)+\cos\left(x+\frac{\pi}{6}\right)$ is $\text{(A)}\frac{12}{5}\sqrt2\qquad\text{(B)}\frac{11}{6}\sqrt2\qquad\text{(C)}\frac{11}{6}\sqrt3\qquad\text{(D)}\frac{12}{5}\sqrt3$

2018 Purple Comet Problems, 24

Five girls and five boys randomly sit in ten seats that are equally spaced around a circle. The probability that there is at least one diameter of the circle with two girls sitting on opposite ends of the diameter is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2007 All-Russian Olympiad, 4

[i]A. Akopyan, A. Akopyan, A. Akopyan, I. Bogdanov[/i] A conjurer Arutyun and his assistant Amayak are going to show following super-trick. A circle is drawn on the board in the room. Spectators mark $2007$ points on this circle, after that Amayak removes one of them. Then Arutyun comes to the room and shows a semicircle, to which the removed point belonged. Explain, how Arutyun and Amayak may show this super-trick.

2006 Baltic Way, 2

Suppose that the real numbers $a_i\in [-2,17],\ i=1,2,\ldots,59,$ satisfy $a_1+a_2+\ldots+a_{59}=0.$ Prove that \[a_1^2+a_2^2+\ldots+a_{59}^2\le 2006\]

2001 China Team Selection Test, 2

$a$ and $b$ are natural numbers such that $b > a > 1$, and $a$ does not divide $b$. The sequence of natural numbers $\{b_n\}_{n=1}^\infty$ satisfies $b_{n + 1} \geq 2b_n \forall n \in \mathbb{N}$. Does there exist a sequence $\{a_n\}_{n=1}^\infty$ of natural numbers such that for all $n \in \mathbb{N}$, $a_{n + 1} - a_n \in \{a, b\}$, and for all $m, l \in \mathbb{N}$ ($m$ may be equal to $l$), $a_m + a_l \not\in \{b_n\}_{n=1}^\infty$?

2024 AIME, 8

Tags:
Torus $\mathcal T$ is the surface produced by revolving a circle with radius $3$ around an axis in the plane a distance $6$ from the center of the circle. When a sphere of radius $11$ rests inside $\mathcal T$, it is internally tangent to $\mathcal T$ along a circle with radius $r_{i}$, and when it rests outside $\mathcal T$, it is externally tangent along a circle with radius $r_{o}$. The difference $r_{i}-r_{o}=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2019 LIMIT Category A, Problem 2

Tags: geometry
From a square with sides of length $2m$, corners are cut away so as to form a regular octagon. What is the area of the octagon in $m^2$? $\textbf{(A)}~2\sqrt3$ $\textbf{(B)}~\frac4{\sqrt3}$ $\textbf{(C)}~4\left(\sqrt2-1\right)$ $\textbf{(D)}~\text{None of the above}$

2016 Moldova Team Selection Test, 9

Tags: algebra
Let $\alpha \in \left( 0, \dfrac{\pi}{2}\right)$.Find the minimum value of the expression $$ P = (1+\cos\alpha)\left(1+\frac{1}{\sin \alpha} \right)+(1+\sin \alpha)\left(1+\frac{1}{\cos \alpha} \right) .$$

2012 NIMO Problems, 3

In chess, there are two types of minor pieces, the bishop and the knight. A bishop may move along a diagonal, as long as there are no pieces obstructing its path. A knight may jump to any lattice square $\sqrt{5}$ away as long as it isn't occupied. One day, a bishop and a knight were on squares in the same row of an infinite chessboard, when a huge meteor storm occurred, placing a meteor in each square on the chessboard independently and randomly with probability $p$. Neither the bishop nor the knight were hit, but their movement may have been obstructed by the meteors. The value of $p$ that would make the expected number of valid squares that the bishop can move to and the number of squares that the knight can move to equal can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Lewis Chen[/i]

1966 Polish MO Finals, 5

Each of the diagonals $AD$, $BE$, $CF$ of a convex hexagon $ABCDEF$ bisects the area of the hexagon. Prove that these three diagonals pass through the same point.

Gheorghe Țițeica 2025, P1

Tags: algebra
Find all triples of non-negative integers $(a,b,c)$ which simultaneously satisfy the conditions: [list] [*] $1\leq a<b<c\leq 100$, [*] $b$ is the geometric mean of $a$ and $c$, [*] $\{\sqrt{b}\}$ is the arithmetic mean of $\{\sqrt{a}\}$ and $\{\sqrt{c}\}$.

2007 Grigore Moisil Intercounty, 1

For a point $ P $ situated in the plane determined by a triangle $ ABC, $ prove the following inequality: $$ BC\cdot PB\cdot PC+AC\cdot PC\cdot PA +AB\cdot PA\cdot PB\ge AB\cdot BC\cdot CA $$

2008 IMO Shortlist, 3

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

Kvant 2022, M2712

Let $ABC$ be a triangle, with $\angle A=\alpha,\angle B=\beta$ and $\angle C=\gamma$. Prove that \[\sum_{\text{cyc}}\tan \frac{\alpha}{2}\tan\frac{\beta}{2}\cot\frac{\gamma}{2}\geqslant\sqrt{3}.\][i]Proposed by R. Regimov (Azerbaijan)[/i]

2022 VTRMC, 3

Find all positive integers $a, b, c, d,$ and $n$ satisfying $n^a + n^b + n^c = n^d$ and prove that these are the only such solutions.

1985 AMC 12/AHSME, 3

Tags: incenter , geometry
In right $ \triangle ABC$ with legs $ 5$ and $ 12$, arcs of circles are drawn, one with center $ A$ and radius $ 12$, the other with center $ B$ and radius $ 5$. They intersect the hypotenuse at $ M$ and $ N$. Then, $ MN$ has length: [asy]size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); real r=degrees(B); draw(A--B--C--cycle^^Arc(A,12,0,r)^^Arc(B,B.y,180+r,270)); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(point--N)); label("$12$", (6,0), S); label("$5$", (12,3.5), E);[/asy] $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ \frac {13}{5} \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ \frac {24}{5}$

2000 Swedish Mathematical Competition, 1

Each of the numbers $1, 2, ... , 10$ is colored red or blue. $5$ is red and at least one number is blue. If $m, n$ are different colors and $m+n \le 10$, then $m+n$ is blue. If $m, n$ are different colors and $mn \le 10$, then $mn$ is red. Find all the colors.

1973 Bulgaria National Olympiad, Problem 1

Let the sequence $a_1,a_2,\ldots,a_n,\ldots$ is defined by the conditions: $a_1=2$ and $a_{n+1}=a_n^2-a_n+1$ $(n=1,2,\ldots)$. Prove that: (a) $a_m$ and $a_n$ are relatively prime numbers when $m\ne n$. (b) $\lim_{n\to\infty}\sum_{k=1}^n\frac1{a_k}=1$ [i]I. Tonov[/i]

2023 AIME, 15

For each positive integer $n$ let $a_n$ be the least positive integer multiple of $23$ such that $a_n\equiv1\pmod{2^n}$. Find the number of positive integers $n$ less than or equal to $1000$ that satisfy $a_n=a_{n+1}$.

2021 USA IMO Team Selection Test, 3

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ that satisfy the inequality \[ f(y) - \left(\frac{z-y}{z-x} f(x) + \frac{y-x}{z-x}f(z)\right) \leq f\left(\frac{x+z}{2}\right) - \frac{f(x)+f(z)}{2} \] for all real numbers $x < y < z$. [i]Proposed by Gabriel Carroll[/i]

2013 Tuymaada Olympiad, 2

Tags: ratio , geometry , vector
$ABCDEF$ is a convex hexagon, such that in it $AC \parallel DF$, $BD \parallel AE$ and $CE \parallel BF$. Prove that \[AB^2+CD^2+EF^2=BC^2+DE^2+AF^2.\] [i]N. Sedrakyan[/i]

2011 Korea National Olympiad, 1

Find the number of positive integer $ n < 3^8 $ satisfying the following condition. "The number of positive integer $k (1 \leq k \leq \frac {n}{3})$ such that $ \frac{n!}{(n-3k)! \cdot k! \cdot 3^{k+1}} $ is not a integer" is $ 216 $.

2023 Malaysia IMONST 2, 1

Tags:
Prove that for all positive integers $n$, $1^3 + 2^3 + 3^3 +\dots+n^3$ is a perfect square.

2016 Romanian Masters in Mathematic, 1

Tags: geometry
Let $ABC$ be a triangle and let $D$ be a point on the segment $BC, D\neq B$ and $D\neq C$. The circle $ABD$ meets the segment $AC$ again at an interior point $E$. The circle $ACD$ meets the segment $AB$ again at an interior point $F$. Let $A'$ be the reflection of $A$ in the line $BC$. The lines $A'C$ and $DE$ meet at $P$, and the lines $A'B$ and $DF$ meet at $Q$. Prove that the lines $AD, BP$ and $CQ$ are concurrent (or all parallel).

1962 Putnam, A6

Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $ab$ and $a+b$, and having the property that for every rational number $r$ exactly one of the following three statements is true: $$r\in S,\;\; -r\in S,\;\;r =0.$$ Prove that $S$ is the set of all positive rational numbers.