Found problems: 85335
2018 Czech-Polish-Slovak Junior Match, 6
Positive real numbers $a, b$ are such that $a^3 + b^3 = 2$.
Show that that $\frac{1}{a}+\frac{1}{b}\ge 2(a^2 - a + 1)(b^2 - b + 1)$.
1993 IMO Shortlist, 1
Let $ABC$ be a triangle, and $I$ its incenter. Consider a circle which lies inside the circumcircle of triangle $ABC$ and touches it, and which also touches the sides $CA$ and $BC$ of triangle $ABC$ at the points $D$ and $E$, respectively. Show that the point $I$ is the midpoint of the segment $DE$.
2019 Polish Junior MO First Round, 1
The natural number $n$ was multiplied by $3$, resulting in the number $999^{1000}$. Find the unity digit of $n$.
2025 Japan MO Finals, 2
Let $ABC$ be an acute-angled triangle with circumcenter $O$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABO$ and $ACO$, respectively. The circumcircle of $\triangle AO_1O_2$ intersects segment $BC$ at two distinct points $P$ and $Q$, with the four points $B, P, Q, C$ appearing in this order along $BC$. Let $O_3$ be the circumcenter of $\triangle OPQ$. Prove that points $A, O, O_3$ are collinear.
1990 IMO Longlists, 40
Given three letters $X, Y, Z$, we can construct letter sequences arbitrarily, such as $XZ, ZZYXYY, XXYZX$, etc. For any given sequence, we can perform following operations:
$T_1$: If the right-most letter is $Y$, then we can add $YZ$ after it, for example, $T_1(XYZXXY) =
(XYZXXYYZ).$
$T_2$: If The sequence contains $YYY$, we can replace them by $Z$, for example, $T_2(XXYYZYYYX) =
(XXYYZZX).$
$T_3$: We can replace $Xp$ ($p$ is any sub-sequence) by $XpX$, for example, $T_3(XXYZ) = (XXYZX).$
$T_4$: In a sequence containing one or more $Z$, we can replace the first $Z$ by $XY$, for example,
$T_4(XXYYZZX) = (XXYYXYZX).$
$T_5$: We can replace any of $XX, YY, ZZ$ by $X$, for example, $T_5(ZZYXYY) = (XYXX)$ or $(XYXYY)$ or $(ZZYXX).$
Using above operations, can we get $XYZZ$ from $XYZ \ ?$
1991 USAMO, 1
In triangle $\, ABC, \,$ angle $\,A\,$ is twice angle $\,B,\,$ angle $\,C\,$ is obtuse, and the three side lengths $\,a,b,c\,$ are integers. Determine, with proof, the minimum possible perimeter.
2008 CentroAmerican, 6
Let $ ABC$ be an acute triangle. Take points $ P$ and $ Q$ inside $ AB$ and $ AC$, respectively, such that $ BPQC$ is cyclic. The circumcircle of $ ABQ$ intersects $ BC$ again in $ S$ and the circumcircle of $ APC$ intersects $ BC$ again in $ R$, $ PR$ and $ QS$ intersect again in $ L$. Prove that the intersection of $ AL$ and $ BC$ does not depend on the selection of $ P$ and $ Q$.
2006 Hong Kong TST., 2
The function $f(x,y)$, defined on the set of all non-negative integers, satisfies
(i) $f(0,y)=y+1$
(ii) $f(x+1,0)=f(x,1)$
(iii) $f(x+1,y+1)=f(x,f(x+1,y))$
Find f(3,2005), f(4,2005)
2001 Baltic Way, 6
The points $A, B, C, D, E$ lie on the circle $c$ in this order and satisfy $AB\parallel EC$ and $AC\parallel ED$. The line tangent to the circle $c$ at $E$ meets the line $AB$ at $P$. The lines $BD$ and $EC$ meet at $Q$. Prove that $|AC|=|PQ|$.
1993 Moldova Team Selection Test, 1
Prove that $\frac{5^{125}-1}{5^{25}-1}$ is a composite number.
2023 239 Open Mathematical Olympiad, 1
There are $n{}$ wise men in a hall and everyone sees each other. Each man will wear a black or white hat. The wise men should simultaneously write down on their piece of paper a guess about the color of their hat. If at least one does not guess, they will all be executed.
The wise men can discuss a strategy before the test and they know that the layout of the hats will be chosen randomly from the set of all $2^n$ layouts. They want to choose their strategy so that the number of layouts for which everyone guesses correctly is as high as possible. What is this number equal to?
2021 MMATHS, 12
$ABCD$ is a regular tetrahedron with side length 1. Points $X,$ $Y,$ and $Z,$ distinct from $A,$ $B,$ and $C,$ respectively, are drawn such that $BCDX,$ $ACDY,$ and $ABDZ$ are also regular tetrahedra. If the volume of the polyhedron with faces $ABC,$ $XYZ,$ $BXC,$ $XCY,$ $CYA,$ $YAZ,$ $AZB,$ and $ZBX$ can be written as $\frac{a\sqrt{b}}{c}$ for positive integers $a,b,c$ with $\gcd(a,c) = 1$ and $b$ squarefree, find $a+b+c.$
[i]Proposed by Jason Wang[/i]
2011 Today's Calculation Of Integral, 761
Find $\lim_{n\to\infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}.$
2021 Polish Junior MO First Round, 2
A triangle $ABC$ is given with $AC = BC = 5$. The altitude of this triangle drawn from vertex $A$ has length $4$. Calculate the length of the altitude of $ABC$ drawn from vertex $C$.
2013 Finnish National High School Mathematics Competition, 3
The points $A,B,$ and $C$ lies on the circumference of the unit circle. Furthermore, it is known that $AB$ is a diameter of the circle and \[\frac{|AC|}{|CB|}=\frac{3}{4}.\] The bisector of $ABC$ intersects the circumference at the point $D$. Determine the length of the $AD$.
1979 All Soviet Union Mathematical Olympiad, 281
The finite sequence $a_1, a_2, ... , a_n$ of ones and zeroes should satisfy a condition:
[i]for every $k$ from $0$ to $(n-1)$ the sum a_1a_{k+1} + a_2a_{k+2} + ... + a_{n-k}a_n should be odd.[/i]
a) Construct such a sequence for $n=25$.
b) Prove that there exists such a sequence for some $n > 1000$.
1981 Austrian-Polish Competition, 3
Given is a triangle $ABC$, the inscribed circle $G$ of which has radius $r$. Let $r_a$ be the radius of the circle touching $AB$, $AC$ and $G$. [This circle lies inside triangle $ABC$.] Define $r_b$ and $r_c$ similarly. Prove that $r_a + r_b + r_c \geq r$ and find all cases in which equality occurs.
[i]Bosnia - Herzegovina Mathematical Olympiad 2002[/i]
1969 IMO Longlists, 27
$(GBR 4)$ The segment $AB$ perpendicularly bisects $CD$ at $X$. Show that, subject to restrictions, there is a right circular cone whose axis passes through $X$ and on whose surface lie the points $A,B,C,D.$ What are the restrictions?
2016 NIMO Problems, 6
Consider a sequence $a_0$, $a_1$, $\ldots$, $a_9$ of distinct positive integers such that $a_0=1$, $a_i < 512$ for all $i$, and for every $1 \le k \le 9$ there exists $0 \le m \le k-1$ such that \[(a_k-2a_m)(a_k-2a_m-1) = 0.\] Let $N$ be the number of these sequences. Find the remainder when $N$ is divided by $1000$.
[i]Based on a proposal by Gyumin Roh[/i]
1965 Spain Mathematical Olympiad, 4
Find all the intervals $I$ where any element of the interval $x \in I$ satisfies $$\cos x +\sin x >1.$$ Do the same computation when $x$ satisfies $$\cos x +\vert \sin x \vert>1.$$
2021 Kosovo National Mathematical Olympiad, 3
Let $ABC$ be a triangle and let $O$ be the centre of its circumscribed circle. Points $X, Y$ which are neither of the points $A, B$ or $C$, lie on the circumscribed circle and are so that the angles $XOY$ and $BAC$ are equal (with the same orientation). Show that the orthocentre of the triangle that is formed by the lines $BY, CX$ and $XY$ is a fixed point.
2014 Estonia Team Selection Test, 3
Three line segments, all of length $1$, form a connected figure in the plane. Any two different line segments can intersect only at their endpoints. Find the maximum area of the convex hull of the figure.
1963 AMC 12/AHSME, 6
Triangle $BAD$ is right-angled at $B$. On $AD$ there is a point $C$ for which $AC=CD$ and $AB=BC$. The magnitude of angle $DAB$, in degrees, is:
$\textbf{(A)}\ 67\dfrac{1}{2} \qquad
\textbf{(B)}\ 60 \qquad
\textbf{(C)}\ 45 \qquad
\textbf{(D)}\ 30 \qquad
\textbf{(E)}\ 22\dfrac{1}{2}$
2014 ASDAN Math Tournament, 3
Compute all prime numbers $p$ such that $8p+1$ is a perfect square.
2008 National Chemistry Olympiad, 9
How many moles of oxygen gas are produced by the decomposition of $245$ g of potassium chlorate?
\[\ce{2KClO3(s)} \rightarrow \ce{2KCl(s)} + \ce{3O2(g)}\]
Given:
Molar Mass/ $\text{g} \cdot \text{mol}^{-1}$
$\ce{KClO3}$: $122.6$
$ \textbf{(A)}\hspace{.05in}1.50 \qquad\textbf{(B)}\hspace{.05in}2.00 \qquad\textbf{(C)}\hspace{.05in}2.50 \qquad\textbf{(D)}\hspace{.05in}3.00 \qquad $