This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 VIASM Summer Challenge, Problem 2

Let $S$ be the set of real numbers $k$ with the following property: for all set of real numbers $(a,b,c)$ satisfying $ab+bc+ca=1$, we always have the inequality:$$\frac{a}{{\sqrt {{a^2} + ab + {b^2} + k} }} + \frac{b}{{\sqrt {{b^2} + bc + {c^2} + k} }} + \frac{c}{{\sqrt {{c^2} + ca + {a^2} + k} }} \ge \sqrt {\frac{3}{{k + 1}}} .$$ a) Assume that $k\in S$. Prove that: $k\ge 2$. b) Prove that: $2\in S$.

2015 Thailand TSTST, 2

Tags: inequalities
Let $a, b, c \geq 1$. Prove that $$\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geq\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}.$$

2015 Balkan MO Shortlist, N7

Positive integer $m$ shall be called [i]anagram [/i] of positive $n$ if every digit $a$ appears as many times in the decimal representation of $m$ as it appears in the decimal representation of $n$ also. Is it possible to find $4$ different positive integers such that each of the four to be [i]anagram [/i] of the sum of the other $3$? (Bulgaria)

MOAA Accuracy Rounds, 2021.4

Tags: accuracy
Compute the number of two-digit numbers $\overline{ab}$ with nonzero digits $a$ and $b$ such that $a$ and $b$ are both factors of $\overline{ab}$. [i]Proposed by Nathan Xiong[/i]

2009 IberoAmerican Olympiad For University Students, 7

Let $G$ be a group such that every subgroup of $G$ is subnormal. Suppose that there exists $N$ normal subgroup of $G$ such that $Z(N)$ is nontrivial and $G/N$ is cyclic. Prove that $Z(G)$ is nontrivial. ($Z(G)$ denotes the center of $G$). [b]Note[/b]: A subgroup $H$ of $G$ is subnormal if there exist subgroups $H_1,H_2,\ldots,H_m=G$ of $G$ such that $H\lhd H_1\lhd H_2 \lhd \ldots \lhd H_m= G$ ($\lhd$ denotes normal subgroup).

2015 Geolympiad Summer, 3.

Tags:
Let $ABC$ be an acute scalene triangle with incenter $I$, circumcircle $w_1$, and denote the circumcircle of $BIC$ as $w_2$. Suppose point $P$ lies on $w_2$ and is inside $w_1$. Let $X,Y$ lie on $BC$ with $XP \perp BP, YP \perp PC$. Circles $O_1, O_2$ are drawn tangent to $w_1$ at points on the same side of $BC$ as $A$ and tangent to $BC$ at $X,Y$ respectively. Let the centers of those two circles be $Z_1, Z_2$. Let $D$ be the point on $w_2$ opposite to $P$ and let $E$ be the foot of the altitude from $P$ to $BC$. Show that $DE \perp Z_1Z_2$

2012 Regional Olympiad of Mexico Center Zone, 1

Consider the set: $A = \{1, 2,..., 100\}$ Prove that if we take $11$ different elements from $A$, there are $x, y$ such that $x \neq y$ and $0 < |\sqrt{x} - \sqrt{y}| < 1$

1998 Tournament Of Towns, 3

$AB$ and $CD$ are segments lying on the two sides of an angle whose vertex is $O$. $A$ is between $O$ and $B$, and $C$ is between $O$ and $D$ . The line connecting the midpoints of the segments $AD$ and $BC$ intersects $AB$ at $M$ and $CD$ at $N$. Prove that $\frac{OM}{ON}=\frac{AB}{CD}$ (V Senderov)

2019 Greece Team Selection Test, 4

Find all functions $f:(0,\infty)\mapsto\mathbb{R}$ such that $\displaystyle{(y^2+1)f(x)-yf(xy)=yf\left(\frac{x}{y}\right),}$ for every $x,y>0$.

2019 Kazakhstan National Olympiad, 5

Given a checkered rectangle of size n × m. Is it always possible to mark $3$ or $4$ nodes of a rectangle so that at least one of the marked nodes lay on each straight line containing the side of the rectangle, and the non-self-intersecting polygon with vertices at these nodes has an area equal to $$\dfrac{1}{2}\min \left ( \text{gcd}(n, m), \dfrac{n+m}{\text{gcd}(n, m)} \right)$$?

2014 Swedish Mathematical Competition, 4

A square is cut into a finitely number of triangles in an arbitrary way. Show the sum of the diameters of the inscribed circles in these triangles is greater than the side length of the square.

2010 Contests, 2

Calculate the sum of the series $\sum_{-\infty}^{\infty}\frac{\sin^33^k}{3^k}$.

2016 BMT Spring, 9

On $5 \times 5$ grid of lattice points, every point is uniformly randomly colored blue, red, or green. Find the expected number of monochromatic triangles T with vertices chosen from the lattice grid, such that some two sides of $T$ are parallel to the axis.

2011 Hanoi Open Mathematics Competitions, 7

Find all pairs $(x, y)$ of real numbers satisfying the system : $\begin{cases} x + y = 3 \\ x^4 - y^4 = 8x - y \end{cases}$

2009 AIME Problems, 6

Let $ m$ be the number of five-element subsets that can be chosen from the set of the first $ 14$ natural numbers so that at least two of the five numbers are consecutive. Find the remainder when $ m$ is divided by $ 1000$.

LMT Speed Rounds, 2016.24

Tags:
Let $S$ be a set consisting of all positive integers less than or equal to $100$. Let $P$ be a subset of $S$ such that there do not exist two elements $x,y\in P$ such that $x=2y$. Find the maximum possible number of elements of $P$. [i]Proposed by Nathan Ramesh

2014 Taiwan TST Round 1, 2

For a fixed integer $k$, determine all polynomials $f(x)$ with integer coefficients such that $f(n)$ divides $(n!)^k$ for every positive integer $n$.

2013 CHMMC (Fall), 7

The points $(0, 0)$, $(a, 5)$, and $(b, 11)$ are the vertices of an equilateral triangle. Find $ab$.

2022-IMOC, A3

Find all functions $f:\mathbb R\to \mathbb R$ such that $$xy(f(x+y)-f(x)-f(y))=2f(xy)$$ for all $x,y\in \mathbb R.$ [i]Proposed by USJL[/i]

2021 239 Open Mathematical Olympiad, 5

The median $AD$ is drawn in triangle $ABC$. Point $E$ is selected on segment $AC$, and on the ray $DE$ there is a point $F$, and $\angle ABC = \angle AED$ and $AF // BC$. Prove that from segments $BD, DF$ and $AF$, you can make a triangle, the area of ​​which is not less half the area of ​​triangle $ABC$.

2005 Slovenia National Olympiad, Problem 4

Several teams from Littletown and Bigtown took part on a tournament. There were nine more teams from Bigtown than those from Littletown. Any two teams played exactly one match, and the winner and loser got 1 and 0 points respectively (no ties). The teams from Bigtown in total gained nine times more points than those from Littletown. What is the maximum possible number of wins of the best team from Littletown?

2017 Portugal MO, 1

Determine all integer values of n for which the number $\frac{14n+25}{2n+1}$ 'is a perfect square.

2007 Princeton University Math Competition, 6

Tags:
If integers $a$, $b$, $c$, and $d$ satisfy $ bc + ad = ac + 2bd = 1 $, find all possible values of $ \frac {a^2 + c^2}{b^2 + d^2} $.

2010 All-Russian Olympiad, 3

Let us call a natural number $unlucky$ if it cannot be expressed as $\frac{x^2-1}{y^2-1} $ with natural numbers $x,y >1$. Is the number of $unlucky$ numbers finite or infinite?

1997 Slovenia National Olympiad, Problem 3

Tags: geometry
Two disjoint circles $k_1$ and $k_2$ with centers $O_1$ and $O_2$ respectively lie on the same side of a line $p$ and touch the line at $A_1$ and $A_2$ respectively. The segment $O_1O_2$ intersects $k_1$ at $B_1$ and $k_2$ at $B_2$. Prove that $A_1B_1\perp A_2B_2$.