This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1967 AMC 12/AHSME, 36

Given a geometric progression of five terms, each a positive integer less than $100$. The sum of the five terms is $211$. If $S$ is the sum of those terms in the progression which are squares of integers, then $S$ is: $\textbf{(A)}\ 0\qquad \textbf{(B)}\ 91\qquad \textbf{(C)}\ 133\qquad \textbf{(D)}\ 195\qquad \textbf{(E)}\ 211$

1992 Miklós Schweitzer, 8

Let $F$ be a set of filters on X so that if $ \sigma, \tau \in F$ , $\forall S \in\sigma$ , $\forall T\in\tau$ , we have $S \cap T\neq\emptyset$ , then $\sigma \cap \tau \in F$. We say that $F$ is compatible with a topology on X when $x \in X$ is a contact point of $A\subset X$ , if and only if , there is $\sigma \in F$ such that $x \in S$ and $S \cap A \neq\emptyset$ for all $S \in\sigma$ . When is there an $F$ compatible with the topology on X in which finite subsets of X and X are closed ? contact point is also known as adherent point.

2002 China Team Selection Test, 2

$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that: \[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1 \]

2020 HK IMO Preliminary Selection Contest, 5

The $28$ students of a class are seated in a circle. They then all claim that 'the two students next to me are of different genders'. It is known that all boys are lying while exactly $3$ girls are lying. How many girls are there in the class?

2015 China Northern MO, 4

It is known that $a_1, a_2,...a_{108}$ are $108$ different positive integers not exceeding $2015$. Prove that there is a positive integer $k$ such that there are at least four different pairs $(i, j) $satisfying $a_i-a_j =k$.

2011 Postal Coaching, 6

Prove that there exist integers $a, b, c$ all greater than $2011$ such that \[(a+\sqrt{b})^c=\ldots 2010 \cdot 2011\ldots\] [Decimal point separates an integer ending in $2010$ and a decimal part beginning with $2011$.]

2020 Italy National Olympiad, #5

Le $S$ be the set of positive integers greater than or equal to $2$. A function $f: S\rightarrow S$ is italian if $f$ satifies all the following three conditions: 1) $f$ is surjective 2) $f$ is increasing in the prime numbers(that is, if $p_1<p_2$ are prime numbers, then $f(p_1)<f(p_2)$) 3) For every $n\in S$ the number $f(n)$ is the product of $f(p)$, where $p$ varies among all the primes which divide $n$ (For instance, $f(360)=f(2^3\cdot 3^2\cdot 5)=f(2)\cdot f(3)\cdot f(5)$). Determine the maximum and the minimum possible value of $f(2020)$, when $f$ varies among all italian functions.

2018 PUMaC Team Round, 2

Tags:
Let triangle $\triangle{ABC}$ have $AB=90$ and $AC=66$. Suppose that the line $IG$ is perpendicular to side $BC$, where $I$ and $G$ are the incenter and centroid, respectively. Find the length of $BC$.

2016 Ecuador NMO (OMEC), 6

A positive integer $n$ is "[i]olympic[/i]" if there are $n$ non-negative integers $x_1, x_2, ..., x_n$ that satisfy that: $\bullet$ There is at least one positive integer $j$: $1 \le j \le n$ such that $x_j \ne 0$. $\bullet$ For any way of choosing $n$ numbers $c_1, c_2, ..., c_n$ from the set $\{-1, 0, 1\}$, where not all $c_i$ are equal to zero, it is true that the sum $c_1x_1 + c_2x_2 +... + c_nx_n$ is not divisible by $n^3$. Find the largest positive "olympic" integer.

1998 Tournament Of Towns, 3

Tags: geometry
In a triangle $ ABC$ the points $ A'$, $ B'$ and $ C'$ lie on the sides $ BC$, $ CA$ and $ AB$, respectively. It is known that $ \angle AC'B' \equal{} \angle B'A'C$, $ \angle CB'A' \equal{} \angle A'C'B$ and $ \angle BA'C' \equal{} \angle C'B'A$. Prove that $ A'$, $ B'$ and $ C'$ are the midpoints of the corresponding sides.

2018 PUMaC Team Round, 8

Tags:
Jackson has a $5\times 5$ grid of squares. He places coins in the grid squares $-$ at most one per square $-$ so that no row, column, or diagonal has five coins. What is the maximum number of coins that he can place?

2014 Contests, 3

Let $A_1,A_2,...$ be a sequence of sets such that for any positive integer $i$, there are only finitely many values of $j$ such that $A_j\subseteq A_i$. Prove that there is a sequence of positive integers $a_1,a_2,...$ such that for any pair $(i,j)$ to have $a_i\mid a_j\iff A_i\subseteq A_j$.

2010 Mathcenter Contest, 1

Let $a,b,c\in\mathbb{N}$ prove that if there is a polynomial $P,Q,R\in\mathbb{C}[x]$, which have no common factors and satisfy $$P^a+Q^b=R^c$$ and $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}&gt;1.$$ [i](tatari/nightmare)[/i]

Revenge EL(S)MO 2024, 6

Fix a point $A$, a circle $\Omega$ centered at $O$, and reals $r$ and $\theta$. Let $X$ and $Y$ be variable points on $\Omega$ so that $\measuredangle XOY = \theta$. The tangents to $\Omega$ at $X$ and $Y$ meet at $T$, and a dilation at $T$ with scale factor $r$ sends $A$ to $A'$. Let $P$ be the foot from $A'$ to $TX$. $ $ $ $ $ $ $ $ $ $ Suppose that some point $P^*$ is the same for two different $X$. Show that $\measuredangle TXY = \measuredangle AP^\ast O$. (All angles are directed.) Proposed by [i]Karn Chutinan[/i]

1975 Vietnam National Olympiad, 5

Show that the sum of the (local) maximum and minimum values of the function $\frac{tan(3x)}{tan^3x}$ on the interval $\big(0, \frac{\pi }{2}\big)$ is rational.

2011 Sharygin Geometry Olympiad, 12

Let $AP$ and $BQ$ be the altitudes of acute-angled triangle $ABC$. Using a compass and a ruler, construct a point $M$ on side $AB$ such that $\angle AQM = \angle BPM$.

2017 Switzerland - Final Round, 4

Let $n$ be a natural number and $p, q$ be prime numbers such that the following statements hold: $$pq | n^p + 2$$ $$n + 2 | n^p + q^p.$$ Show that there is a natural number $m$ such that $q|4^mn + 2$ holds.

2013 Purple Comet Problems, 11

Tags: area , geometry
In the following diagram two sides of a square are tangent to a circle with diameter $8$. One corner of the square lies on the circle. There are positive integers $m$ and $n$ so that the area of the square is $m +\sqrt{n}$. Find $m + n$. [asy] import graph; size(4.4cm); real labelscalefactor = 0.5; pen dotstyle = black; filldraw((-0.707106781,0.707106781)--(-0.707106781,-1)--(1,-1)--(1,0.707106781)--cycle,gray, linewidth(1.4)); draw(circle((0,0),1), linewidth(1.4)); [/asy]

1994 Mexico National Olympiad, 2

The $12$ numbers on a clock face are rearranged. Show that we can still find three adjacent numbers whose sum is $21$ or more.

2014 Tuymaada Olympiad, 1

Given are three different primes. What maximum number of these primes can divide their sum? [i](A. Golovanov)[/i]

2007 AMC 10, 9

A cryptographic code is designed as follows. The first time a letter appears in a given message it is replaced by the letter that is $ 1$ place to its right in the alphabet (assuming that the letter $ A$ is one place to the right of the letter $ Z$). The second time this same letter appears in the given message, it is replaced by the letter that is $ 1\plus{}2$ places to the right, the third time it is replaced by the letter that is $ 1 \plus{} 2 \plus{} 3$ places to the right, and so on. For example, with this code the word "banana" becomes "cbodqg". What letter will replace the last letter $ \text{s}$ in the message "Lee's sis is a Mississippi miss, Chriss!"? $ \textbf{(A)}\ \text{g}\qquad \textbf{(B)}\ \text{h}\qquad \textbf{(C)}\ \text{o}\qquad \textbf{(D)}\ \text{s}\qquad \textbf{(E)}\ \text{t}$

2008 District Round (Round II), 3

For $n>2$, an $n\times n$ grid of squares is coloured black and white like a chessboard, with its upper left corner coloured black. Then we can recolour some of the white squares black in the following way: choose a $2\times 3$ (or $3\times 2$) rectangle which has exactly $3$ white squares and then colour all these $3$ white squares black. Find all $n$ such that after a series of such operations all squares will be black.

2015 India PRMO, 14

$14.$ If $3^x+2^y=985.$ and $3^x-2^y=473.$ What is the value of $xy ?$

1980 USAMO, 4

The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.

2023 Kazakhstan National Olympiad, 5

Solve the given equation in prime numbers $$p^3+q^3+r^3=p^2qr$$