This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

PEN K Problems, 33

Find all functions $f: \mathbb{Q}\to \mathbb{Q}$ such that for all $x,y,z \in \mathbb{Q}$: \[f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3f(x)+3f(y)+3f(z).\]

2011 Croatia Team Selection Test, 4

We define the sequence $x_n$ so that \[x_1=a, x_2=b, x_n=\frac{{x_{n-1}}^2+{x_{n-2}}^2}{x_{n-1}+x_{n-2}} \quad \forall n \geq 3.\] Where $a,b >1$ are relatively prime numbers. Show that $x_n$ is not an integer for $n \geq 3$.

1991 Greece Junior Math Olympiad, 1

In a class of $30$ kids are distributed $430 $ apples . Prove that at least two kids will take the same number of apples.

2012 India Regional Mathematical Olympiad, 5

Let $AL$ and $BK$ be the angle bisectors in a non-isosceles triangle $ABC,$ where $L$ lies on $BC$ and $K$ lies on $AC.$ The perpendicular bisector of $BK$ intersects the line $AL$ at $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK.$ Prove that $LN=NA.$

1910 Eotvos Mathematical Competition, 3

The lengths of sides $CB$ and $CA$ of $\vartriangle ABC$ are $a$ and $b$, and the angle between them is $\gamma = 120^o$. Express the length of the bisector of $\gamma$ in terms of $a$ and $b$.

2012 National Olympiad First Round, 29

Let $D$ and $E$ be points on $[BC]$ and $[AC]$ of acute $\triangle ABC$, respectively. $AD$ and $BE$ meet at $F$. If $|AF|=|CD|=2|BF|=2|CE|$, and $Area(\triangle ABF) = Area(\triangle DEC)$, then $Area(\triangle AFC)/Area(\triangle BFC) = ?$ $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 2\sqrt2 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt2 \qquad \textbf{(E)}\ 1$

II Soros Olympiad 1995 - 96 (Russia), 9.2

Will the number $1/1996$ decrease or increase and by how many times if in the decimal notation of this number the first non-zero digit after the decimal point is crossed out?

2005 AIME Problems, 4

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

2011 Indonesia TST, 1

Find all $4$-tuple of real numbers $(x, y, z, w)$ that satisfy the following system of equations: $$x^2 + y^2 + z^2 + w^2 = 4$$ $$\frac{1}{x^2} +\frac{1}{y^2} +\frac{1}{z^2 }+\frac{1}{w^2} = 5 -\frac{1}{(xyzw)^2}$$

2021 ABMC., Team

[u]Round 1[/u] [b]1.1.[/b] There are $99$ dogs sitting in a long line. Starting with the third dog in the line, if every third dog barks three times, and all the other dogs each bark once, how many barks are there in total? [b]1.2.[/b] Indigo notices that when she uses her lucky pencil, her test scores are always $66 \frac23 \%$ higher than when she uses normal pencils. What percent lower is her test score when using a normal pencil than her test score when using her lucky pencil? [b]1.3.[/b] Bill has a farm with deer, sheep, and apple trees. He mostly enjoys looking after his apple trees, but somehow, the deer and sheep always want to eat the trees' leaves, so Bill decides to build a fence around his trees. The $60$ trees are arranged in a $5\times 12$ rectangular array with $5$ feet between each pair of adjacent trees. If the rectangular fence is constructed $6$ feet away from the array of trees, what is the area the fence encompasses in feet squared? (Ignore the width of the trees.) [u]Round 2[/u] [b]2.1.[/b] If $x + 3y = 2$, then what is the value of the expression $9^x * 729^y$? [b]2.2.[/b] Lazy Sheep loves sleeping in, but unfortunately, he has school two days a week. If Lazy Sheep wakes up each day before school's starting time with probability $1/8$ independent of previous days, then the probability that Lazy Sheep wakes up late on at least one school day over a given week is $p/q$ for relatively prime positive integers $p, q$. Find $p + q$. [b]2.3.[/b] An integer $n$ leaves remainder $1$ when divided by $4$. Find the sum of the possible remainders $n$ leaves when divided by $20$. [u]Round 3[/u] [b]3.1. [/b]Jake has a circular knob with three settings that can freely rotate. Each minute, he rotates the knob $120^o$ clockwise or counterclockwise at random. The probability that the knob is back in its original state after $4$ minutes is $p/q$ for relatively prime positive integers $p, q$. Find $p + q$. [b]3.2.[/b] Given that $3$ not necessarily distinct primes $p, q, r$ satisfy $p+6q +2r = 60$, find the sum of all possible values of $p + q + r$. [b]3.3.[/b] Dexter's favorite number is the positive integer $x$, If $15x$ has an even number of proper divisors, what is the smallest possible value of $x$? (Note: A proper divisor of a positive integer is a divisor other than itself.) [u]Round 4[/u] [b]4.1.[/b] Three circles of radius $1$ are each tangent to the other two circles. A fourth circle is externally tangent to all three circles. The radius of the fourth circle can be expressed as $\frac{a\sqrt{b}-\sqrt{c}}{d}$ for positive integers $a, b, c, d$ where $b$ is not divisible by the square of any prime and $a$ and $d$ are relatively prime. Find $a + b + c + d$. [b]4.2. [/b]Evaluate $$\frac{\sqrt{15}}{3} \cdot \frac{\sqrt{35}}{5} \cdot \frac{\sqrt{63}}{7}... \cdot \frac{\sqrt{5475}}{73}$$ [b]4.3.[/b] For any positive integer $n$, let $f(n)$ denote the number of digits in its base $10$ representation, and let $g(n)$ denote the number of digits in its base $4$ representation. For how many $n$ is $g(n)$ an integer multiple of $f(n)$? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784571p24468619]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1954 Poland - Second Round, 6

Prove that if $ x_1, x_2, \ldots, x_n $ are angles between $ 0^\circ $ and $ 180^\circ $, and $ n $ is any natural number greater than $ 1 $, then $$ \sin (x_1 + x_2 + \ldots + x_n) < \sin x_1 + \sin x_2 + \ldots + \sin x_n.$$

2017 NIMO Problems, 7

Eve randomly chooses two $\textbf{distinct}$ points on the coordinate plane from the set of all $11^2$ lattice points $(x, y)$ with $0 \le x \le 10$, $0 \le y \le 10$. Then, Anne the ant walks from the point $(0,0)$ to the point $(10, 10)$ using a sequence of one-unit right steps and one-unit up steps. Let $P$ be the number of paths Anne could take that pass through both of the points that Eve chose. The expected value of $P$ is $\dbinom{20}{10} \cdot \dfrac{a}{b}$ for relatively prime positive integers $a$ and $b$. Compute $100a+b$. [i]Proposed by Michael Tang[/i]

2004 Romania Team Selection Test, 15

Some of the $n$ faces of a polyhedron are colored in black such that any two black-colored faces have no common vertex. The rest of the faces of the polyhedron are colored in white. Prove that the number of common sides of two white-colored faces of the polyhedron is at least $n-2$.

2015 Turkey Junior National Olympiad, 1

Tags: function
For a non-constant function $f:\mathbb{R}\to \mathbb{R}$ prove that there exist real numbers $x,y$ satisfying $f(x+y)<f(xy)$

2022 Balkan MO Shortlist, G2

Tags: geometry
Let $ABC$ be a triangle with $AB > AC$ with incenter $I{}$. The internal bisector of the angle $BAC$ intersects the $BC$ at the point $D{}$. Let $M{}$ the midpoint of the segment $AD{}$, and let $F{}$ be the second intersection point of $MB$ with the circumcircle of the triangle $BIC$. Prove that $AF$ is perpendicular to $FC$.

2012 India Regional Mathematical Olympiad, 1

Let $ABCD$ be a unit square. Draw a quadrant of the a circle with $A$ as centre and $B,D$ as end points of the arc. Similarly, draw a quadrant of a circle with $B$ as centre and $A,C$ as end points of the arc. Inscribe a circle $\Gamma$ touching the arc $AC$ externally, the arc $BD$ externally and also touching the side $AD$. Find the radius of $\Gamma$.

OIFMAT III 2013, 7

Tags: algebra
Define $ a \circledast b = a + b-2ab $. Calculate the value of $$A=\left( ...\left(\left(\frac{1}{2014}\circledast \frac{2}{2014}\right)\circledast\frac{3}{2014}\right)...\right)\circledast\frac{2013}{2014}$$

2018 India Regional Mathematical Olympiad, 3

For a rational number $r$, its *period* is the length of the smallest repeating block in its decimal expansion. for example, the number $r=0.123123123...$ has period $3$. If $S$ denotes the set of all rational numbers of the form $r=\overline{abcdefgh}$ having period $8$, find the sum of all elements in $S$.

2013 Saudi Arabia IMO TST, 3

A Saudi company has two offices. One office is located in Riyadh and the other in Jeddah. To insure the connection between the two offices, the company has designated from each office a number of correspondents so that : (a) each pair of correspondents from the same office share exactly one common correspondent from the other office. (b) there are at least $10$ correspondents from Riyadh. (c) Zayd, one of the correspondents from Jeddah, is in contact with exactly $8$ correspondents from Riyadh. What is the minimum number of correspondents from Jeddah who are in contact with the correspondent Amr from Riyadh?

1982 IMO Longlists, 27

Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?

2020 Chile National Olympiad, 1

Determine all positive integers $n$ such that the decimal representation of the number $6^n + 1$ has all its digits the same.

2013 Princeton University Math Competition, 3

Tags:
Let $x_1=1/20$, $x_2=1/13$, and \[x_{n+2}=\dfrac{2x_nx_{n+1}(x_n+x_{n+1})}{x_n^2+x_{n+1}^2}\] for all integers $n\geq 1$. Evaluate $\textstyle\sum_{n=1}^\infty(1/(x_n+x_{n+1}))$.

2021 Alibaba Global Math Competition, 13

Let $M_n=\{(u,v) \in S^n \times S^n: u \cdot v=0\}$, where $n \ge 2$, and $u \cdot v$ is the Euclidean inner product of $u$ and $v$. Suppose that the topology of $M_n$ is induces from $S^n \times S^n$. (1) Prove that $M_n$ is a connected regular submanifold of $S^n \times S^n$. (2) $M_n$ is Lie Group if and only if $n=2$.

1971 IMO, 1

Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.

1942 Eotvos Mathematical Competition, 2

Let $a, b, c $and $d$ be integers such that for all integers m and n, there exist integers $x$ and $y$ such that $ax + by = m$, and $cx + dy = n$. Prove that $ad - bc = \pm 1$.