This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1954 Miklós Schweitzer, 5

Tags: probability
[b]5.[/b] Let $\xi _{1},\xi _{2},\dots ,\xi _{n},... $ be independent random variables of uniform distribution in $(0,1)$. Show that the distribution of the random variable $\eta _{n}= \sqrt[]{n}\prod_{k=1}^{n}(1-\frac{\xi _{k}}{k}) (n= 1,2,...)$ tends to a limit distribution for $n \to \infty $. [b](P. 6)[/b]

2007 USAMO, 1

Let $n$ be a positive integer. Define a sequence by setting $a_{1}= n$ and, for each $k > 1$, letting $a_{k}$ be the unique integer in the range $0\leq a_{k}\leq k-1$ for which $a_{1}+a_{2}+...+a_{k}$ is divisible by $k$. For instance, when $n = 9$ the obtained sequence is $9,1,2,0,3,3,3,...$. Prove that for any $n$ the sequence $a_{1},a_{2},...$ eventually becomes constant.

2014 National Olympiad First Round, 24

If the integers $1,2,\dots,n$ can be divided into two sets such that each of the two sets does not contain the arithmetic mean of its any two elements, what is the largest possible value of $n$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ \text{None of the preceding} $

2018 Brazil Team Selection Test, 2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Harvard-MIT Mathematics Tournament, 2

Tags:
Alice starts with the number 0. She can apply 100 operations on her number. In each operation, she can either add 1 to her number, or square her number. After applying all operations, her score is the minimum distance from her number to any perfect square. What is the maximum score she can attain?

2022 IFYM, Sozopol, 4

a) Prove that for each positive integer $n$ the number or ordered pairs of integers $(x,y)$ for which $x^2-xy+y^2=n$ is finite and is multiple of 6. b) Find all ordered pairs of integers $(x,y)$ for which $x^2-xy+y^2=727$.

1999 National Olympiad First Round, 12

\[ \begin{array}{c} {x^{2} \plus{} y^{2} \plus{} z^{2} \equal{} 21} \\ {x \plus{} y \plus{} z \plus{} xyz \equal{} \minus{} 3} \\ {x^{2} yz \plus{} y^{2} xz \plus{} z^{2} xy \equal{} \minus{} 40} \end{array} \] The number of real triples $ \left(x,y,z\right)$ satisfying above system is $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{None}$

2019 All-Russian Olympiad, 5

Tags: geometry , algebra
Radii of five concentric circles $\omega_0,\omega_1,\omega_2,\omega_3,\omega_4$ form a geometric progression with common ratio $q$ in this order. What is the maximal value of $q$ for which it's possible to draw a broken line $A_0A_1A_2A_3A_4$ consisting of four equal segments such that $A_i$ lies on $\omega_i$ for every $i=\overline{0,4}$? [hide=thanks ]Thanks to the user Vlados021 for translating the problem.[/hide]

2011 AMC 10, 25

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2002 Estonia National Olympiad, 1

Find all real parameters $a$ for which the equation $x^8 +ax^4 +1 = 0$ has four real roots forming an arithmetic progression.

2015 IMAR Test, 1

Determine all positive integers expressible, for every integer $ n \geq 3 $, in the form \begin{align*} \frac{(a_1 + 1)(a_2 + 1) \ldots (a_n + 1) - 1}{a_1a_2 \ldots a_n}, \end{align*} where $ a_1, a_2, \ldots, a_n $ are pairwise distinct positive integers.

2016 Taiwan TST Round 2, 6

Tags: geometry
Let $AXYZB$ be a convex pentagon inscribed in a semicircle with diameter $AB$, and let $K$ be the foot of the altitude from $Y$ to $AB$. Let $O$ denote the midpoint of $AB$ and $L$ be the intersection of $XZ$ with $YO$. Select a point $M$ on line $KL$ with $MA=MB$ , and finally, let $I$ be the reflection of $O$ across $XZ$. Prove that if quadrilateral $XKOZ$ is cyclic then so is quadrilateral $YOMI$. [i]Proposed by Evan Chen[/i]

2014 Purple Comet Problems, 18

Tags:
Find the number of subsets of $\{1,3,5,7,9,11,13,15,17,19\}$ where the elements in the subset add to $49$.

2016 VJIMC, 1

Let $f: \mathbb{R} \to (0, \infty)$ be a continuously differentiable function. Prove that there exists $\xi \in (0,1)$ such that $$e^{f'(\xi)} \cdot f(0)^{f(\xi)} = f(1)^{f(\xi)}$$

2020 LIMIT Category 1, 3

Tags: geometry
The diagnols $\overline{AC}$ and $\overline{BD}$ of a quaderilateral $ABCD$ meet at $O$. Let $s_1$ be the area of $\triangle{AOB}$ and $s_2$ be the area of $\triangle{OCD}$. Then show that $$\sqrt{s_1}+\sqrt{s_2} \leq \sqrt{s}$$ Also find a geometrical condition for equality to hold (By geometrical condition we mean something like parallel lines, perpendicular lines,bisecting lines etc.)

1999 Belarusian National Olympiad, 4

A circle is inscribed in the trapezoid [i]ABCD[/i]. Let [i]K, L, M, N[/i] be the points of tangency of this circle with the diagonals [i]AC[/i] and [i]BD[/i], respectively ([i]K[/i] is between [i]A[/i] and [i]L[/i], and [i]M[/i] is between [i]B[/i] and [i]N[/i]). Given that $AK\cdot LC=16$ and $BM\cdot ND=\frac94$, find the radius of the circle. [color=red][Moderator edit: A solution of this problem can be found on http://www.ajorza.org/math/mathfiles/scans/belarus.pdf , page 20 (the statement of the problem is on page 6). The author of the problem is I. Voronovich.][/color]

2022 South Africa National Olympiad, 4

Let $ABC$ be a triangle with $AB < AC$. A point $P$ on the circumcircle of $ABC$ (on the same side of $BC$ as $A$) is chosen in such a way that $BP = CP$. Let $BP$ and the angle bisector of $\angle BAC$ intersect at $Q$, and let the line through $Q$ and parallel to $BC$ intersect $AC$ at $R$. Prove that $BR = CR$.

1978 All Soviet Union Mathematical Olympiad, 261

Given a circle with radius $R$ and inscribed $n$-gon with area $S$. We mark one point on every side of the given polygon. Prove that the perimeter of the polygon with the vertices in the marked points is not less than $2S/R$.

1991 IMO Shortlist, 27

Determine the maximum value of the sum \[ \sum_{i < j} x_ix_j (x_i \plus{} x_j) \] over all $ n \minus{}$tuples $ (x_1, \ldots, x_n),$ satisfying $ x_i \geq 0$ and $ \sum^n_{i \equal{} 1} x_i \equal{} 1.$

2024 Dutch IMO TST, 3

Let $a,b,c$ be real numbers such that $0 \le a \le b \le c$ and $a+b+c=1$. Show that \[ab\sqrt{b-a}+bc\sqrt{c-b}+ac\sqrt{c-a}<\frac{1}{4}.\]

2010 Oral Moscow Geometry Olympiad, 5

Points $K$ and $M$ are taken on the sides $AB$ and $CD$ of square $ABCD$, respectively, and on the diagonal $AC$ - point $L$ such that $ML = KL$. Let $P$ be the intersection point of the segments $MK$ and $BD$. Find the angle $\angle KPL$.

2024 Mozambique National Olympiad, P4

Tags: puzzle
Fernando has six coins, one of which is fake. We do not know what the weight of a fake coin is or the weight of a real coin, we only know that real coins all have the same weight and that the weight of the fake coin is different. Using a two-pan scale, show that it is possible to discover the fake coin using just $3$ weighings.

2009 Purple Comet Problems, 9

Tags:
Bill bought 13 notebooks, 26 pens, and 19 markers for 25 dollars. Paula bought 27 notebooks, 18 pens, and 31 markers for 31 dollars. How many dollars would it cost Greg to buy 24 notebooks, 120 pens, and 52 markers?

2018 Baltic Way, 3

Let $a,b,c,d$ be positive real numbers such that $abcd=1$. Prove the inequality \[\frac{1}{\sqrt{a+2b+3c+10}}+\frac{1}{\sqrt{b+2c+3d+10}}+\frac{1}{\sqrt{c+2d+3a+10}}+\frac{1}{\sqrt{d+2a+3b+10}} \le 1.\]

2016 CHMMC (Fall), 8

For positive integers $n,d$, define $n \% d$ to be the unique value of the positive integer $r < d$ such that $n = qd + r$, for some positive integer $q$. What is the smallest value of $n$ not divisible by $5,7,11,13$ for which $n^2 \% 5 < n^2 \% 7 < n^2 \% 11 < n^2 \% 13$?