Found problems: 85335
2006 MOP Homework, 3
Prove for every irrational real number a, there are irrational numbers b and b' such that a+b and ab' are rational while a+b' and ab are irrational.
2004 AIME Problems, 5
In order to complete a large job, 1000 workers were hired, just enough to complete the job on schedule. All the workers stayed on the job while the first quarter of the work was done, so the first quarter of the work was completed on schedule. Then 100 workers were laid off, so the second quarter of the work was completed behind schedule. Then an additional 100 workers were laid off, so the third quarter of the work was completed still further behind schedule. Given that all workers work at the same rate, what is the minimum number of additional workers, beyond the 800 workers still on the job at the end of the third quarter, that must be hired after three-quarters of the work has been completed so that the entire project can be completed on schedule or before?
2010 National Chemistry Olympiad, 10
Magnesium chloride dissolves in water to form:
$ \textbf{(A)}\hspace{.05in}\text{hydrated MgCl}_2 \text{molecules}\qquad$
$\textbf{(B)}\hspace{.05in}\text{hydrated Mg}^{2+} \text{ions and hydrated Cl}^- \text{ions} \qquad$
$\textbf{(C)}\hspace{.05in}\text{hydrated Mg}^{2+} \text{ions and hydrated Cl}_2 ^{2-} \text{ions}\qquad$
$\textbf{(D)}\hspace{.05in}\text{hydrated Mg atoms and hydrated Cl}_2 \text{molecules}\qquad$
1989 IMO Shortlist, 26
Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which
\[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\]
where $ x_0, x_1, \ldots , x_n$ are real variables.
2014 Taiwan TST Round 2, 2
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that
\[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \]
Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.
2012 Saint Petersburg Mathematical Olympiad, 6
$ABCD$ is parallelogram. Line $l$ is perpendicular to $BC$ at $B$. Two circles passes through $D,C$, such that $l$ is tangent in points $P$ and $Q$. $M$ - midpoint $AB$.
Prove that $\angle DMP=\angle DMQ$
2023 Germany Team Selection Test, 2
Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define
$$x_{k+1} = \begin{cases}
x_k + d &\text{if } a \text{ does not divide } x_k \\
x_k/a & \text{if } a \text{ divides } x_k
\end{cases}$$
Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.
2003 Croatia National Olympiad, Problem 4
Prove that the number $\binom np-\left\lfloor\frac np\right\rfloor$ is divisible by $p$ for every prime number and integer $n\ge p$.
1999 Polish MO Finals, 3
Show that one can find $50$ distinct positive integers such that the sum of each number and its digits is the same.
2022 Moldova Team Selection Test, 2
Real numbers $a, b, c, d$ satisfy $$a^2+b^2+c^2+d^2=4.$$
Find the greatest possible value of $$E(a,b,c,d)=a^4+b^4+c^4+d^4+4(a+b+c+d)^2 .$$
2023 CCA Math Bonanza, T6
$ABC$ is an equilateral triangle and $l$ is a line such that the distances from $A, B,$ and $C$ to $l$ are $39, 35,$ and $13$, respectively. Find the largest possible value of $AB$.
[i]Team #6[/i]
1992 Romania Team Selection Test, 4
Let $A$ be the set of all ordered sequences $(a_1,a_2,...,a_{11})$ of zeros and ones. The elements of $A$ are ordered as follows: The first element is $(0,0,...,0)$, and the $n + 1$−th is obtained from the $n$−th by changing the first component from the right such that the newly obtained sequence was not obtained before. Find the $1992$−th term of the ordered set $A$
2019 CMIMC, 2
For all positive integers $n$, let $f(n)$ return the smallest positive integer $k$ for which $\tfrac{n}{k}$ is not an integer. For example, $f(6) = 4$ because $1$, $2$, and $3$ all divide $6$ but $4$ does not. Determine the largest possible value of $f(n)$ as $n$ ranges over the set $\{1,2,\ldots, 3000\}$.
2014 Cuba MO, 9
The triangle $ABC$ is inscribed in circle $\Gamma$. The points X, Y, Z are the midpoints of the arcs $BC$, $CA$ and $AB$ respectively in $\Gamma$ (those that do not contain the third vertex, in each case). The intersection points of the sides of the triangles $\vartriangle ABC$ and $\vartriangle XY Z$ form the hexagon $DEFGHK$. Prove that the diagonals $DG$, $EH$ and $FK$ are concurrent
2013 AIME Problems, 15
Let $N$ be the number of ordered triples $(A,B,C)$ of integers satisfying the conditions
(a) $0\leq A<B<C\leq99$,
(b) there exist integers $a$, $b$, and $c$, and prime $p$ where $0\leq b < a < c < p$,
(c) $p$ divides $A-a$, $B-b$, and $C-c$, and
(d) each ordered triple $(A,B,C)$ and each ordered triple $(b,a,c)$ form arithmetic sequences.
Find $N$.
2019 OMMock - Mexico National Olympiad Mock Exam, 3
Let $\mathbb{Z}$ be the set of integers. Find all functions $f: \mathbb{Z}\rightarrow \mathbb{Z}$ such that, for any two integers $m, n$, $$f(m^2)+f(mf(n))=f(m+n)f(m).$$
[i]Proposed by Victor Domínguez and Pablo Valeriano[/i]
1997 May Olympiad, 5
When Pablo turns $15$, he throws a party inviting $43$ friends. He presents them with a cake n the form of a regular $15$-sided polygon and on it $15$ candles. The candles are arranged so that between candles and vertices there are never three aligned (any three candles are not aligned, nor are any two candles with a vertex of the polygon, nor are any two vertices of the polygon with a candle). Then Pablo divides the cake into triangular pieces, by means of cuts that join candles to each other or candles and vertices, but also do not intersect with others already made. Why, by doing this, Paul was able to distribute a piece to each of his guests but he was left without eating?
2014 Online Math Open Problems, 26
Let $ABC$ be a triangle with $AB=26$, $AC=28$, $BC=30$. Let $X$, $Y$, $Z$ be the midpoints of arcs $BC$, $CA$, $AB$ (not containing the opposite vertices) respectively on the circumcircle of $ABC$. Let $P$ be the midpoint of arc $BC$ containing point $A$. Suppose lines $BP$ and $XZ$ meet at $M$ , while lines $CP$ and $XY$ meet at $N$. Find the square of the distance from $X$ to $MN$.
[i]Proposed by Michael Kural[/i]
2016 Junior Balkan Team Selection Tests - Moldova, 5
Real numbers $a$ and $b$ satisfy the system of equations $$\begin{cases} a^3-a^2+a-5=0 \\ b^3-2b^2+2b+4=0 \end{cases}$$ Find the numerical value of the sum $a+ b$.
2023 Malaysian IMO Training Camp, 4
Let $k$ be a fixed integer. In the town of Ivanland, there are at least $k+1$ citizens standing on a plane such that the distances between any two citizens are distinct. An election is to be held such that every citizen votes the $k$-th closest citizen to be the president. What is the maximal number of votes a citizen can have?
[i]Proposed by Ivan Chan Kai Chin[/i]
2016 International Zhautykov Olympiad, 1
A quadrilateral $ABCD$ is inscribed in a circle with center $O$. It's diagonals meet at $M$.The circumcircle of $ABM$ intersects the sides $AD$ and $BC$ at $N$ and $K$ respectively. Prove that areas of $NOMD$ and $KOMC$ are equal.
2016 IFYM, Sozopol, 6
We are given a chessboard 100 x 100, $k$ barriers (each with length 1), and one ball. We want to put the barriers between the cells of the board and put the ball in some cell, in such way that the ball can get to each possible cell on the board. The only way that the ball can move is by lifting the board so it can go only forward, backward, to the left or to the right. The ball passes all cells on its way until it reaches a barrier or the edge of the board where it stops. What’s the least number of barriers we need so we can achieve that?
2012 NIMO Summer Contest, 14
A set of lattice points is called [i]good[/i] if it does not contain two points that form a line with slope $-1$ or slope $1$. Let $S = \{(x, y)\ |\ x, y \in \mathbb{Z}, 1 \le x, y \le 4\}$. Compute the number of non-empty good subsets of $S$.
[i]Proposed by Lewis Chen[/i]
1998 Baltic Way, 12
In a triangle $ABC$, $\angle BAC =90^{\circ}$. Point $D$ lies on the side $BC$ and satisfies $\angle BDA=2\angle BAD$. Prove that
\[\frac{2}{AD}=\frac{1}{BD}+\frac{1}{CD} \]
1981 All Soviet Union Mathematical Olympiad, 321
A number is written in the each vertex of a cube. It is allowed to add one to two numbers written in the ends of one edge. Is it possible to obtain the cube with all equal numbers if the numbers were initially as on the pictures: