This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 LIMIT Category A, Problem 10

The number of maps $f$ from $1,2,3$ into the set $1,2,3,4,5$ such that $f(i)\le f(j)$ whenever $i\le j$ is $\textbf{(A)}~60$ $\textbf{(B)}~50$ $\textbf{(C)}~35$ $\textbf{(D)}~30$

2020 AMC 10, 25

Tags: probability
Jason rolls three fair standard six-sided dice. Then he looks at the rolls and chooses a subset of the dice (possibly empty, possibly all three dice) to reroll. After rerolling, he wins if and only if the sum of the numbers face up on the three dice is exactly $7$. Jason always plays to optimize his chances of winning. What is the probability that he chooses to reroll exactly two of the dice? $\textbf{(A) } \frac{7}{36} \qquad\textbf{(B) } \frac{5}{24} \qquad\textbf{(C) } \frac{2}{9} \qquad\textbf{(D) } \frac{17}{72} \qquad\textbf{(E) } \frac{1}{4}$

VMEO II 2005, 5

Let $a,b$ be positive integers . How many integers numbers can be written in the form $ap+bq$, where $p,q$ are nonnegative integers and $p+q\le{2005}$ ?

2023 Brazil Undergrad MO, 5

A drunken horse moves on an infinite board whose squares are numbered in pairs $(a, b) \in \mathbb{Z}^2$. In each movement, the 8 possibilities $$(a, b) \rightarrow (a \pm 1, b \pm 2),$$ $$(a, b) \rightarrow (a \pm 2, b \pm 1)$$ are equally likely. Knowing that the knight starts at $(0, 0)$, calculate the probability that, after $2023$ moves, it is in a square $(a, b)$ with $a \equiv 4 \pmod 8$ and $b \equiv 5 \pmod 8$.

1966 AMC 12/AHSME, 7

Tags:
Let $\frac{35x-29}{x^2-3x+2}=\frac{N_1}{x-1}+\frac{N_2}{x-2}$ be an identity in $x$. The numerical value of $N_1N_2$ is: $\text{(A)} \ -246 \qquad \text{(B)} \ -210 \qquad \text{(C)} \ -29 \qquad \text{(D)} \ 210 \qquad \text{(E)} \ 246$

2020 BMT Fall, 8

Dexter is running a pyramid scheme. In Dexter's scheme, he hires ambassadors for his company, Lie Ultimate. Any ambassador for his company can recruit up to two more ambassadors (who are not already ambassadors), who can in turn recruit up to two more ambassadors each, and so on (Dexter is a special ambassador that can recruit as many ambassadors as he would like). An ambassador's downline consists of the people they recruited directly as well as the downlines of those people. An ambassador earns executive status if they recruit two new people and each of those people has at least $70$ people in their downline (Dexter is not considered an executive). If there are $2020$ ambassadors (including Dexter) at Lie Ultimate, what is the maximum number of ambassadors with executive status?

2002 China Team Selection Test, 1

Given triangle $ ABC$ and $ AB\equal{}c$, $ AC\equal{}b$ and $ BC\equal{}a$ satisfying $ a \geq b \geq c$, $ BE$ and $ CF$ are two interior angle bisectors. $ P$ is a point inside triangle $ AEF$. $ R$ and $ Q$ are the projections of $ P$ on sides $ AB$ and $ AC$. Prove that $ PR \plus{} PQ \plus{} RQ < b$.

2004 Purple Comet Problems, 15

Tags: percent
Jerry purchased some stock for $ \$14,400$ at the same time that Susan purchased a bond for $ \$6,250$. Jerry’s investment went up $20$ percent the first year, fell $10$ percent the second year, and rose another $20$ percent the third year. Susan’s investment grew at a constant rate of compound interest for three years. If both investments are worth the same after three years, what was the annual percentage increase of Susan’s investment?

2008 Iran MO (2nd Round), 1

In how many ways, can we draw $n-3$ diagonals of a $n$-gon with equal sides and equal angles such that: $i)$ none of them intersect each other in the polygonal. $ii)$ each of the produced triangles has at least one common side with the polygonal.

2024 Sharygin Geometry Olympiad, 23

A point $P$ moves along a circle $\Omega$. Let $A$ and $B$ be two fixed points of $\Omega$, and $C$ be an arbitrary point inside $\Omega$. The common external tangents to the circumcircles of triangles $APC$ and $BCP$ meet at point $Q$. Prove that all points $Q$ lie on two fixed lines.

1998 Belarus Team Selection Test, 2

Let $a$, $b$, $c$ be real positive numbers. Show that \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1\]

MathLinks Contest 6th, 4.2

Let $n$ be a positive integer. Prove that there exist an infinity of multiples of $n$ which do not contain the digit “$9$” in their decimal representation

2016 May Olympiad, 5

On the blackboard are written the $400$ integers $1, 2, 3, \cdots , 399, 400$. Luis erases $100$ of these numbers, then Martin erases another $100$. Martin wins if the sum of the $200$ erased numbers equals the sum of those not deleted; otherwise, he wins Luis. Which of the two has a winning strategy? What if Luis deletes $101$ numbers and Martín deletes $99$? In each case, explain how the player with the winning strategy can ensure victory.

2018 AMC 12/AHSME, 24

Tags:
Let $\lfloor x\rfloor$ denote the greatest integer less than or equal to $x$. How many real numbers $x$ satisfy the equation $x^2 + 10{,}000\lfloor x \rfloor = 10{,}000x$? $\textbf{(A) } 197 \qquad \textbf{(B) } 198 \qquad \textbf{(C) } 199 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 201$

1996 IMO Shortlist, 3

Let $ a > 2$ be given, and starting $ a_0 \equal{} 1, a_1 \equal{} a$ define recursively: \[ a_{n\plus{}1} \equal{} \left(\frac{a^2_n}{a^2_{n\minus{}1}} \minus{} 2 \right) \cdot a_n.\] Show that for all integers $ k > 0,$ we have: $ \sum^k_{i \equal{} 0} \frac{1}{a_i} < \frac12 \cdot (2 \plus{} a \minus{} \sqrt{a^2\minus{}4}).$

2007 JBMO Shortlist, 2

$\boxed{\text{A2}}$ Prove that for all Positive reals $a,b,c$ $\frac{a^2-bc}{2a^2+bc}+\frac{b^2-ca}{2b^2+ca}+\frac{c^2-ab}{2c^2+ab}\leq 0$

2010 USA Team Selection Test, 6

Let $T$ be a finite set of positive integers greater than 1. A subset $S$ of $T$ is called [i]good[/i] if for every $t \in T$ there exists some $s \in S$ with $\gcd(s, t) > 1$. Prove that the number of good subsets of $T$ is odd.

2001 Greece JBMO TST, 1

a) Factorize $A= x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2$ b) Prove that there are no integers $x,y,z$ such that $x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=2000 $

Novosibirsk Oral Geo Oly VII, 2023.6

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

2008 AMC 10, 12

Tags:
Postman Pete has a pedometer to count his steps. The pedometer records up to $ 99999$ steps, then flips over to $ 00000$ on the next step. Pete plans to determine his mileage for a year. On January $ 1$ Pete sets the pedometer to $ 00000$. During the year, the pedometer flips from $ 99999$ to $ 00000$ forty-four times. On December $ 31$ the pedometer reads $ 50000$. Pete takes $ 1800$ steps per mile. Which of the following is closest to the number of miles Pete walked during the year? $ \textbf{(A)}\ 2500 \qquad \textbf{(B)}\ 3000 \qquad \textbf{(C)}\ 3500 \qquad \textbf{(D)}\ 4000 \qquad \textbf{(E)}\ 4500$

Math Hour Olympiad, Grades 5-7, 2013.67

[u]Round 1[/u] [b]p1.[/b] Goldilocks enters the home of the three bears – Papa Bear, Mama Bear, and Baby Bear. Each bear is wearing a different-colored shirt – red, green, or blue. All the bears look the same to Goldilocks, so she cannot otherwise tell them apart. The bears in the red and blue shirts each make one true statement and one false statement. The bear in the red shirt says: “I'm Blue's dad. I'm Green's daughter.” The bear in the blue shirt says: “Red and Green are of opposite gender. Red and Green are my parents.” Help Goldilocks find out which bear is wearing which shirt. [b]p2.[/b] The University of Washington is holding a talent competition. The competition has five contests: math, physics, chemistry, biology, and ballroom dancing. Any student can enter into any number of the contests but only once for each one. For example, a student may participate in math, biology, and ballroom. It turned out that each student participated in an odd number of contests. Also, each contest had an odd number of participants. Was the total number of contestants odd or even? [b]p3.[/b] The $99$ greatest scientists of Mars and Venus are seated evenly around a circular table. If any scientist sees two colleagues from her own planet sitting an equal number of seats to her left and right, she waves to them. For example, if you are from Mars and the scientists sitting two seats to your left and right are also from Mars, you will wave to them. Prove that at least one of the $99$ scientists will be waving, no matter how they are seated around the table. [b]p4.[/b] One hundred boys participated in a tennis tournament in which every player played each other player exactly once and there were no ties. Prove that after the tournament, it is possible for the boys to line up for pizza so that each boy defeated the boy standing right behind him in line. [b]p5.[/b] To celebrate space exploration, the Science Fiction Museum is going to read Star Wars and Star Trek stories for $24$ hours straight. A different story will be read each hour for a total of $12$ Star Wars stories and $12$ Star Trek stories. George and Gene want to listen to exactly $6$ Star Wars and $6$ Star Trek stories. Show that no matter how the readings are scheduled, the friends can find a block of $12$ consecutive hours to listen to the stories together. [u]Round 2[/u] [b]p6.[/b] $2013$ people attended Cinderella's ball. Some of the guests were friends with each other. At midnight, the guests started turning into mice. After the first minute, everyone who had no friends at the ball turned into a mouse. After the second minute, everyone who had exactly one friend among the remaining people turned into a mouse. After the third minute, everyone who had two human friends left in the room turned into a mouse, and so on. What is the maximal number of people that could have been left at the ball after $2013$ minutes? [b]p7.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 USAMTS Problems, 3

Tags:
Let $S$ be a subset of $\{1, 2, . . . , 500\}$ such that no two distinct elements of S have a product that is a perfect square. Find, with proof, the maximum possible number of elements in $S$.

1966 AMC 12/AHSME, 36

Tags:
Let $(1+x+x^2)^n=a_0+a_1x+a_2x^2+...+a_{2n}x^{2n}$ be an identity in $x$. If we lt $s=a_0+a_2+a_4+...+a_{2n}$, then $s$ equals: $\text{(A)}\ 2^n\qquad \text{(B)}\ 2^n+1\qquad \text{(C)}\ \dfrac{3^n-1}{2}\qquad \text{(D)}\ \dfrac{3^n}{2}\qquad \text{(E)}\ \dfrac{3^n+1}{2}$

2016 Costa Rica - Final Round, LR2

There are $2016$ participants in the Olcotournament of chess. It is known that in any set of four participants, there is one of them who faced the other three. Prove there is at least $2013$ participants who faced everyone else.

2019 Czech-Polish-Slovak Junior Match, 5

Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.