This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2012 District Olympiad, 4

Consider a tetrahedron $ABCD$ in which $AD \perp BC$ and $AC \perp BD$. We denote by $E$ and $F$ the projections of point $B$ on the lines $AD$ and $AC$, respectively. If $M$ and $N$ are the midpoints of the segments $[AB]$ and $[CD]$, respectively, show that $MN \perp EF$

2023 Dutch Mathematical Olympiad, 5

A maths teacher has $10$ cards with the numbers $1$ to $10$ on them, one number per card. She places these cards in some order in a line next to each other on the table. The students come to the table, one at a time. The student whose turn it is goes once through the line of cards from left to right and removes every card she encounters that is (at that moment) the lowest card on the table. This continues till all cards are removed from the table. For example, if the line is in order $3$, $1$, $4$, $5$, $8,$ $6$, $9$, $10$, $2$, $7$ from left to right, the first student takes cards $1$ and $2$. Then the second student comes who, in our example, takes the cards $3$, $4$, $5$, $6$, and $7$. The third student then takes the cards $8$, $9$, and $10$. Let $A$ be the number of sequences of cards that the teacher can choose so that exactly nine students get a turn to pick cards. Let $B$ be the number of sequences of cards that the teacher can choose so that exactly two students get a turn to pick cards. Prove that $A = B$.

1993 Cono Sur Olympiad, 1

On a chess board ($8*8$) there are written the numbers $1$ to $64$: on the first line, from left to right, there are the numbers $1, 2, 3, ... , 8$; on the second line, from left to right, there are the numbers $9, 10, 11, ... , 16$;etc. The $\"+\"$ and $\"-\"$ signs are put to each number such that, in each line and in each column, there are $4$ $\"+\"$ signs and $4$ $\"-\"$ signs. Then, the $64$ numbers are added. Find all the possible values of this sum.

2025 USAMO, 2

Tags:
Let $n$ and $k$ be positive integers with $k<n$. Let $P(x)$ be a polynomial of degree $n$ with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers $a_0,\,a_1,\,\ldots,\,a_k$ such that the polynomial $a_kx^k+\cdots+a_1x+a_0$ divides $P(x)$, the product $a_0a_1\cdots a_k$ is zero. Prove that $P(x)$ has a nonreal root.

2014 Peru IMO TST, 5

$n$ vertices from a regular polygon with $2n$ sides are chosen and coloured red. The other $n$ vertices are coloured blue. Afterwards, the $\binom{n}{2}$ lengths of the segments formed with all pairs of red vertices are ordered in a non-decreasing sequence, and the same procedure is done with the $\binom{n}{2}$ lengths of the segments formed with all pairs of blue vertices. Prove that both sequences are identical.

2015 AMC 10, 18

Tags:
Hexadecimal (base-16) numbers are written using numeric digits $0$ through $9$ as well as the letters $A$ through $F$ to represent $10$ through $15$. Among the first $1000$ positive integers, there are $n$ whose hexadecimal representation contains only numeric digits. What is the sum of the digits of $n$? $ \textbf{(A) }17\qquad\textbf{(B) }18\qquad\textbf{(C) }19\qquad\textbf{(D) }20\qquad\textbf{(E) }21 $

2021 Romanian Master of Mathematics, 3

A number of $17$ workers stand in a row. Every contiguous group of at least $2$ workers is a $\textit{brigade}$. The chief wants to assign each brigade a leader (which is a member of the brigade) so that each worker’s number of assignments is divisible by $4$. Prove that the number of such ways to assign the leaders is divisible by $17$. [i]Mikhail Antipov, Russia[/i]

2015 IFYM, Sozopol, 6

Find all functions $f: \mathbb{R}\rightarrow \mathbb{R}$ such that for $\forall$ $x,y\in \mathbb{R}$ : $f(x+f(x+y))+xy=yf(x)+f(x)+f(y)+x$.

1993 Tournament Of Towns, (394) 2

The decimal representation of all integers from $1$ to an arbitrary integer $n$ are written one after another as such: $$123... 91011... 99100... (n).$$ Does there exist $n$ such that each of the digits $0,1,2,...,9$ appears the same number of times in the given sequence? (A Andzans)

2004 All-Russian Olympiad Regional Round, 9.5

The cells of a $100 \times 100$ table contain non-zero numbers. It turned out that all $100$ hundred-digit numbers written horizontally are divisible by 11. Could it be that exactly $99$ hundred-digit numbers written vertically are also divisible by $11$?

2023 SG Originals, Q2

Let $a, b, c, d$ be positive reals with $a - c = b - d > 0$. Show that $$\frac{ab}{cd} \ge \left(\frac{\sqrt{a} +\sqrt{b}}{\sqrt{c}+\sqrt{d}}\right)^4$$

2006 AIME Problems, 9

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r$, where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r)$.

2005 India IMO Training Camp, 2

Determine all positive integers $n > 2$ , such that \[ \frac{1}{2} \varphi(n) \equiv 1 ( \bmod 6) \]

2020 Jozsef Wildt International Math Competition, W41

If $m,n\in\mathbb N_{\ge2}$, find the best constant $k\in\mathbb R$ for which $$\sum_{j=2}^m\sum_{i=2}^n\frac1{i^j}<k$$ [i]Proposed by Dorin Mărghidanu[/i]

2015 BMT Spring, 19

Two sequences $(x_n)_{n\in N}$ and $(y_n)_{n\in N}$ are defined recursively as follows: $x_0 = 2015$ and $x_{n+1} =\left \lfloor x_n \cdot \frac{y_{n+1}}{y_{n-1}} \right \rfloor$ for all $n \ge 0$, $y_0 = 307$ and $y_{n+1} = y_n + 1$ for all $n \ge 0$. Compute $\lim_{n\to \infty} \frac{x_n}{(y_n)^2}$.

2020 Korea - Final Round, P2

There are $2020$ groups, each of which consists of a boy and a girl, such that each student is contained in exactly one group. Suppose that the students shook hands so that the following conditions are satisfied: [list] [*] boys didn't shake hands with boys, and girls didn't shake hands with girls; [*] in each group, the boy and girl had shake hands exactly once; [*] any boy and girl, each in different groups, didn't shake hands more than once; [*] for every four students in two different groups, there are at least three handshakes. [/list] Prove that one can pick $4038$ students and arrange them at a circular table so that every two adjacent students had shake hands.

2014 Contests, 3

Tags: invariant
The numbers $1,2,\dots,10$ are written on a board. Every minute, one can select three numbers $a$, $b$, $c$ on the board, erase them, and write $\sqrt{a^2+b^2+c^2}$ in their place. This process continues until no more numbers can be erased. What is the largest possible number that can remain on the board at this point? [i]Proposed by Evan Chen[/i]

1988 Poland - Second Round, 1

Let $ f(x) $ be a polynomial, $ n $ - a natural number. Prove that if $ f(x^{n}) $ is divisible by $ x-1 $, then it is also divisible by $ x^{n-1} + x^{n-2} + \ldots + x + $1.

2022/2023 Tournament of Towns, P3

Tags: geometry
Consider two concentric circles $\Omega$ and $\omega$. Chord $AD$ of the circle $\Omega$ is tangent to $\omega$. Inside the minor disk segment $AD$ of $\Omega$, an arbitrary point $P{}$ is selected. The tangent lines drawn from the point $P{}$ to the circle $\omega$ intersect the major arc $AD$ of the circle $\Omega$ at points $B{}$ and $C{}$. The line segments $BD$ and $AC$ intersect at the point $Q{}$. Prove that the line segment $PQ$ passes through the midpoint of line segment $AD$. [i]Note.[/i] A circle together with its interior is called a disk, and a chord $XY$ of the circle divides the disk into disk segments, a minor disk segment $XY$ (the one of smaller area) and a major disk segment $XY$.

1938 Moscow Mathematical Olympiad, 041

Given the base, height and the difference between the angles at the base of a triangle, construct the triangle.

2010 Harvard-MIT Mathematics Tournament, 1

Tags:
Suppose that $x$ and $y$ are positive reals such that \[x-y^2=3, \qquad x^2+y^4=13.\] Find $x$.

1977 Canada National Olympiad, 2

Tags: rotation
Let $O$ be the centre of a circle and $A$ a fixed interior point of the circle different from $O$. Determine all points $P$ on the circumference of the circle such that the angle $OPA$ is a maximum. [asy] import graph; unitsize(2 cm); pair A, O, P; A = (0.5,0.2); O = (0,0); P = dir(80); draw(Circle(O,1)); draw(O--A--P--cycle); label("$A$", A, E); label("$O$", O, S); label("$P$", P, N); [/asy]

2023 Hong Kong Team Selection Test, Problem 4

Tags: geometry
Let $ABCD$ be a quadrilateral inscribed in a circle $\Gamma$ such that $AB=BC=CD$. Let $M$ and $N$ be the midpoints of $AD$ and $AB$ respectively. The line $CM$ meets $\Gamma$ again at $E$. Prove that the tangent at $E$ to $\Gamma$, the line $AD$ and the line $CN$ are concurrent.

1986 All Soviet Union Mathematical Olympiad, 440

Consider all the tetrahedrons $AXBY$, circumscribed around the sphere. Let $A$ and $B$ points be fixed. Prove that the sum of angles in the non-plane quadrangle $AXBY$ doesn't depend on points $X$ and $Y$ .

2005 AMC 10, 22

Let $ S$ be the set of the $ 2005$ smallest multiples of $ 4$, and let $ T$ be the set of the $ 2005$ smallest positive multiples of $ 6$. How many elements are common to $ S$ and $ T$? $ \textbf{(A)}\ 166\qquad \textbf{(B)}\ 333\qquad \textbf{(C)}\ 500\qquad \textbf{(D)}\ 668\qquad \textbf{(E)}\ 1001$