This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 IRN-SGP-TWN Friendly Math Competition, 3

Let $N$ and $d$ be two positive integers with $N\geq d+2$. There are $N$ countries connected via two-way direct flights, where each country is connected to exactly $d$ other countries. It is known that for any two different countries, it is possible to go from one to another via several flights. A country is \emph{important} if after removing it and all the $d$ countries it is connected to, there exist two other countries that are no longer connected via several flights. Show that if every country is important, then one can choose two countries so that more than $2d/3$ countries are connected to both of them via direct flights. [i]Proposed by usjl[/i]

2014 ASDAN Math Tournament, 8

Moor made a lopsided ice cream cone. It turned out to be an oblique circular cone with the vertex directly above the perimeter of the base (see diagram below). The height and base radius are both of length $1$. Compute the radius of the largest spherical scoop of ice cream that it can hold such that at least $50\%$ of the scoop’s volume lies inside the cone. [center]<see attached>[/center]

2008 AIME Problems, 1

Tags:
Of the students attending a school party, $ 60\%$ of the students are girls, and $ 40\%$ of the students like to dance. After these students are joined by $ 20$ more boy students, all of whom like to dance, the party is now $ 58\%$ girls. How many students now at the party like to dance?

2009 Harvard-MIT Mathematics Tournament, 10

Tags: ratio , geometry
A [i]kite[/i] is a quadrilateral whose diagonals are perpendicular. Let kite $ABCD$ be such that $\angle B = \angle D = 90^\circ$. Let $M$ and $N$ be the points of tangency of the incircle of $ABCD$ to $AB$ and $BC$ respectively. Let $\omega$ be the circle centered at $C$ and tangent to $AB$ and $AD$. Construct another kite $AB^\prime C^\prime D^\prime$ that is similar to $ABCD$ and whose incircle is $\omega$. Let $N^\prime$ be the point of tangency of $B^\prime C^\prime$ to $\omega$. If $MN^\prime \parallel AC$, then what is the ratio of $AB:BC$?

2010 Contests, 2

Tags: geometry , ratio
Acute triangle $ABP$, where $AB > BP$, has altitudes $BH$, $PQ$, and $AS$. Let $C$ denote the intersection of lines $QS$ and $AP$, and let $L$ denote the intersection of lines $HS$ and $BC$. If $HS = SL$ and $HL$ is perpendicular to $BC$, find the value of $\frac{SL}{SC}$.

2014 Bulgaria National Olympiad, 1

Let $k$ be a given circle and $A$ is a fixed point outside $k$. $BC$ is a diameter of $k$. Find the locus of the orthocentre of $\triangle ABC$ when $BC$ varies. [i]Proposed by T. Vitanov, E. Kolev[/i]

2005 Today's Calculation Of Integral, 68

Find the minimum value of $\int_1^e \left|\ln x-\frac{a}{x}\right|dx\ (0\leq a\leq e)$

2020 USMCA, 23

Tags:
Let $f_n$ be a sequence defined by $f_0=2020$ and \[f_{n+1} = \frac{f_n + 2020}{2020f_n + 1}\] for all $n \geq 0$. Determine $f_{2020}$.

2020 Iran MO (3rd Round), 4

Prove that for every two positive integers $a,b$ greater than $1$. there exists infinitly many $n$ such that the equation $\phi(a^n-1)=b^m-b^t$ can't hold for any positive integers $m,t$.

1977 AMC 12/AHSME, 11

Tags: function
For each real number $x$, let $\textbf{[}x\textbf{]}$ be the largest integer not exceeding $x$ (i.e., the integer $n$ such that $n\le x<n+1$). Which of the following statements is (are) true? $\textbf{I. [}x+1\textbf{]}=\textbf{[}x\textbf{]}+1\text{ for all }x$ $\textbf{II. [}x+y\textbf{]}=\textbf{[}x\textbf{]}+\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y$ $\textbf{III. [}xy\textbf{]}=\textbf{[}x\textbf{]}\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y$ $\textbf{(A) }\text{none}\qquad\textbf{(B) }\textbf{I }\text{only}\qquad\textbf{(C) }\textbf{I}\text{ and }\textbf{II}\text{ only}\qquad\textbf{(D) }\textbf{III }\text{only}\qquad \textbf{(E) }\text{all}$

1982 IMO Longlists, 48

Given a finite sequence of complex numbers $c_1, c_2, \ldots , c_n$, show that there exists an integer $k$ ($1 \leq k \leq n$) such that for every finite sequence $a_1, a_2, \ldots, a_n$ of real numbers with $1 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$, the following inequality holds: \[\left| \sum_{m=1}^n a_mc_m \right| \leq \left| \sum_{m=1}^k c_m \right|.\]

1951 Poland - Second Round, 3

Tags: algebra
Prove that the equation $$\frac{m^2}{a-x} + \frac{n^2}{b-x} = 1,$$ where $ m \ne 0 $, $ n \ne 0 $, $ a \ne b $, has real roots ($ m $, $ n $, $ a $, $ b $ denote real numbers).

2007 Purple Comet Problems, 19

Six chairs sit in a row. Six people randomly seat themselves in the chairs. Each person randomly chooses either to set their feet on the floor, to cross their legs to the right, or to cross their legs to the left. There is only a problem if two people sitting next to each other have the person on the right crossing their legs to the left and the person on the left crossing their legs to the right. The probability that this will [b]not[/b] happen is given by $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1999 Turkey Team Selection Test, 2

Each of $A$, $B$, $C$, $D$, $E$, and $F$ knows a piece of gossip. They communicate by telephone via a central switchboard, which can connect only two of them at a time. During a conversation, each side tells the other everything he or she knows at that point. Determine the minimum number of calls for everyone to know all six pieces of gossip.

2021 Adygea Teachers' Geometry Olympiad, 2

In triangle $ABC$, the incircle touches the side $AC$ at point $B_1$ and one excircle is touching the same side at point $B_2$. It is known that the segments $BB_1$ and $BB_2$ are equal. Is it true that $\vartriangle ABC$ is isosceles?

2005 Purple Comet Problems, 9

Tags:
Find the number of nonnegative integers $n$ for which $(n^2 - 3n + 1)^2 + 1$ is a prime number

2015 ASDAN Math Tournament, 36

Tags:
A blue square of side length $10$ is laid on top of a coordinate grid with corners at $(0,0)$, $(0,10)$, $(10,0)$, and $(10,10)$. Red squares of side length $2$ are randomly placed on top of the grid, changing the color of a $2\times2$ square section red. Each red square when placed lies completely within the blue square, and each square's four corners take on integral coordinates. In addition, randomly placed red squares may overlap, keeping overlapped regions red. Compute the expected value of the number of red squares necessary to turn the entire blue square red, rounded to the nearest integer. Your score will be given by $\lfloor25\min\{(\tfrac{A}{C})^2,(\tfrac{C}{A})^2\}\rfloor$, where $A$ is your answer and $C$ is the actual answer.

1987 IMO Shortlist, 16

Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.[i](IMO Problem 1)[/i] [b][i]Original formulation [/i][/b] Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove: (a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$ (b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $ [i]Proposed by Germany, FR[/i]

2013 Canadian Mathematical Olympiad Qualification Repechage, 5

For each positive integer $k$, let $S(k)$ be the sum of its digits. For example, $S(21) = 3$ and $S(105) = 6$. Let $n$ be the smallest integer for which $S(n) - S(5n) = 2013$. Determine the number of digits in $n$.

1984 IMO Shortlist, 12

Find one pair of positive integers $a,b$ such that $ab(a+b)$ is not divisible by $7$, but $(a+b)^7-a^7-b^7$ is divisible by $7^7$.

2006 Germany Team Selection Test, 1

Find all real solutions $x$ of the equation $\cos\cos\cos\cos x=\sin\sin\sin\sin x$. (Angles are measured in radians.)

2014 Junior Balkan Team Selection Tests - Moldova, 2

Determine all pairs of integers $(x, y)$ that satisfy equation $(y - 2) x^2 + (y^2 - 6y + 8) x = y^2 - 5y + 62$.

1978 IMO Longlists, 46

We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.

2021 Junior Balkan Team Selection Tests - Romania, P4

Let $n\geq 2$ be a positive integer. On an $n\times n$ board, $n$ rooks are placed in such a manner that no two attack each other. All rooks move at the same time and are only allowed to move in a square adjacent to the one in which they are located. Determine all the values ​​of $n$ for which there is a placement of the rooks so that, after a move, the rooks still do not attack each other. [i]Note: Two squares are adjacent if they share a common side.[/i]

2018 Online Math Open Problems, 19

Tags:
Let $P(x)$ be a polynomial of degree at most $2018$ such that $P(i)=\binom{2018}i$ for all integer $i$ such that $0\le i\le 2018$. Find the largest nonnegative integer $n$ such that $2^n\mid P(2020)$. [i]Proposed by Michael Ren