This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 Balkan MO Shortlist, N3

Find all the integer solutions $(x,y,z)$ of the equation $(x + y + z)^5 = 80xyz(x^2 + y^2 + z^2)$,

1981 Bundeswettbewerb Mathematik, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2013 F = Ma, 2

Jordi stands 20 m from a wall and Diego stands 10 m from the same wall. Jordi throws a ball at an angle of 30 above the horizontal, and it collides elastically with the wall. How fast does Jordi need to throw the ball so that Diego will catch it? Consider Jordi and Diego to be the same height, and both are on the same perpendicular line from the wall. $\textbf{(A) } 11 \text{ m/s}\\ \textbf{(B) } 15 \text{ m/s}\\ \textbf{(C) } 19 \text{ m/s}\\ \textbf{(D) } 30 \text{ m/s}\\ \textbf{(E) } 35 \text{ m/s}$

2012 All-Russian Olympiad, 4

Initially there are $n+1$ monomials on the blackboard: $1,x,x^2, \ldots, x^n $. Every minute each of $k$ boys simultaneously write on the blackboard the sum of some two polynomials that were written before. After $m$ minutes among others there are the polynomials $S_1=1+x,S_2=1+x+x^2,S_3=1+x+x^2+x^3,\ldots ,S_n=1+x+x^2+ \ldots +x^n$ on the blackboard. Prove that $ m\geq \frac{2n}{k+1} $.

2010 Dutch IMO TST, 4

Let $ABCD$ be a cyclic quadrilateral satisfying $\angle ABD = \angle DBC$. Let $E$ be the intersection of the diagonals $AC$ and $BD$. Let $M$ be the midpoint of $AE$, and $N$ be the midpoint of $DC$. Show that $MBCN$ is a cyclic quadrilateral.

1995 AMC 8, 12

Tags:
A ''lucky'' year is one in which at least one date, when written in the form month/day/year, has the following property: ''The product of the month times the day equals the last two digits of the year''. For example, 1956 is a lucky year because it has the date 7/8/56 and $7\times 8 = 56$. Which of the following is NOT a lucky year? $\text{(A)}\ 1990 \qquad \text{(B)}\ 1991 \qquad \text{(C)}\ 1992 \qquad \text{(D)}\ 1993 \qquad \text{(E)}\ 1994$

2011 Bangladesh Mathematical Olympiad, HS

[size=130][b]Higher Secondary: 2011[/b] [/size] Time: 4 Hours [b]Problem 1:[/b] Prove that for any non-negative integer $n$ the numbers $1, 2, 3, ..., 4n$ can be divided in tow mutually exclusive classes with equal number of members so that the sum of numbers of each class is equal. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=709 [b]Problem 2:[/b] In the first round of a chess tournament, each player plays against every other player exactly once. A player gets $3, 1$ or $-1$ points respectively for winning, drawing or losing a match. After the end of the first round, it is found that the sum of the scores of all the players is $90$. How many players were there in the tournament? http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=708 [b]Problem 3:[/b] $E$ is the midpoint of side $BC$ of rectangle $ABCD$. $A$ point $X$ is chosen on $BE$. $DX$ meets extended $AB$ at $P$. Find the position of $X$ so that the sum of the areas of $\triangle BPX$ and $\triangle DXC$ is maximum with proof. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=683 [b]Problem 4:[/b] Which one is larger 2011! or, $(1006)^{2011}$? Justify your answer. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=707 [b]Problem 5:[/b] In a scalene triangle $ABC$ with $\angle A = 90^{\circ}$, the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R$. The lines $RS$ and $BC$ intersect at $N$ while the lines $AM$ and $SR$ intersect at $U$. Prove that the triangle $UMN$ is isosceles. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=706 [b]Problem 6:[/b] $p$ is a prime and sum of the numbers from $1$ to $p$ is divisible by all primes less or equal to $p$. Find the value of $p$ with proof. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=693 [b]Problem 7:[/b] Consider a group of $n > 1$ people. Any two people of this group are related by mutual friendship or mutual enmity. Any friend of a friend and any enemy of an enemy is a friend. If $A$ and $B$ are friends/enemies then we count it as $1$ [b]friendship/enmity[/b]. It is observed that the number of friendships and number of enmities are equal in the group. Find all possible values of $n$. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=694 [b]Problem 8:[/b] $ABC$ is a right angled triangle with $\angle A = 90^{\circ}$ and $D$ be the midpoint of $BC$. A point $F$ is chosen on $AB$. $CA$ and $DF$ meet at $G$ and $GB \parallel AD$. $CF$ and $AD$ meet at $O$ and $AF = FO$. $GO$ meets $BC$ at $R$. Find the sides of $ABC$ if the area of $GDR$ is $\dfrac{2}{\sqrt{15}}$ http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=704 [b]Problem 9:[/b] The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of $123$ is $123123$). Find a positive integer (if any) whose repeat is a perfect square. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=703 [b]Problem 10:[/b] Consider a square grid with $n$ rows and $n$ columns, where $n$ is odd (similar to a chessboard). Among the $n^2$ squares of the grid, $p$ are black and the others are white. The number of black squares is maximized while their arrangement is such that horizontally, vertically or diagonally neighboring black squares are separated by at least one white square between them. Show that there are infinitely many triplets of integers $(p, q, n)$ so that the number of white squares is $q^2$. http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=702 The problems of the Junior categories are available in [url=http://matholympiad.org.bd/forum/]BdMO Online forum[/url]: http://matholympiad.org.bd/forum/viewtopic.php?f=25&t=678

1988 Brazil National Olympiad, 3

Find all functions $f:\mathbb{N}^* \rightarrow \mathbb{N}$ such that [list] [*] $f(x \cdot y) = f(x) + f(y)$ [*] $f(30) = 0$ [*] $f(x)=0$ always when the units digit of $x$ is $7$ [/list]

2014 Contests, 3

At a volleyball tournament, each team plays exactly once against each other team. Each game has a winning team, which gets $1$ point. The losing team gets $0$ points. Draws do not occur. In the nal ranking, only one team turns out to have the least number of points (so there is no shared last place). Moreover, each team, except for the team having the least number of points, lost exactly one game against a team that got less points in the final ranking. a) Prove that the number of teams cannot be equal to $6$. b) Show, by providing an example, that the number of teams could be equal to $7$.

2020 MMATHS, I1

Tags: number , digit
A nine-digit number has the form $\overline{6ABCDEFG3}$, where every three consecutive digits sum to $13$. Find $D$. [i]Proposed by Levi Iszler[/i]

2001 Moldova National Olympiad, Problem 7

Tags: geometry , triangle
The incircle of a triangle $ABC$ is centered at $I$ and touches $AC,AB$ and $BC$ at points $K,L,M$, respectively. The median $BB_1$ of $\triangle ABC$ intersects $MN$ at $D$. Prove that the points $I,D,K$ are collinear.

1996 Vietnam Team Selection Test, 1

Tags: geometry , symmetry
Given 3 non-collinear points $A,B,C$. For each point $M$ in the plane ($ABC$) let $M_1$ be the point symmetric to $M$ with respect to $AB$, $M_2$ be the point symmetric to $M_1$ with respect to $BC$ and $M'$ be the point symmetric to $M_2$ with respect to $AC$. Find all points $M$ such that $MM'$ obtains its minimum. Let this minimum value be $d$. Prove that $d$ does not depend on the order of the axes of symmetry we chose (we have 3 available axes, that is $BC$, $CA$, $AB$. In the first part the order of axes we chose $AB$, $BC$, $CA$, and the second part of the problem states that the value $d$ doesn't depend on this order).

2013 Putnam, 1

Tags:
For positive integers $n,$ let the numbers $c(n)$ be determined by the rules $c(1)=1,c(2n)=c(n),$ and $c(2n+1)=(-1)^nc(n).$ Find the value of \[\sum_{n=1}^{2013}c(n)c(n+2).\]

2023 Balkan MO Shortlist, G4

Tags: geometry
Let $O$ and $H$ be the circumcenter and orthocenter of a scalene triangle $ABC$, respectively. Let $D$ be the intersection point of the lines $AH$ and $BC$. Suppose the line $OH$ meets the side $BC$ at $X$. Let $P$ and $Q$ be the second intersection points of the circumcircles of $\triangle BDH$ and $\triangle CDH$ with the circumcircle of $\triangle ABC$, respectively. Show that the four points $P, D, Q$ and $X$ lie on a circle.

2012 China Northern MO, 2

Positive integers $x_1,x_2,...,x_n$ ($n \in N_+$) satisfy $x_1^2 +x_2^2+...+x_n^2=111$, find the maximum possible value of $S =\frac{x_1 +x_2+...+x_n}{n}$.

2017 AMC 10, 15

Tags: probability
Chloé chooses a real number uniformly at random from the interval $[0, 2017]$. Independently, Laurent chooses a real number uniformly at random from the interval $[0,4034]$. What is the probability that Laurent's number is greater than Chloé's number? $\textbf{(A)}~\frac12 \qquad \textbf{(B)}~\frac23 \qquad \textbf{(C)}~\frac34 \qquad \textbf{(D)}~\frac56\qquad \textbf{(E)}~\frac78$

1981 Austrian-Polish Competition, 9

For a function $f : [0,1] \to [0,1] $ we define $f^1 = f $ and $f^{n+1} (x) = f (f^n(x))$ for $0 \le x \le 1$ and $n \in N$. Given that there is a $n$ such that $|f^n(x) - f^n(y)| < |x - y| $ for all distinct $x, y \in [0,1]$, prove that there is a unique $x_0 \in [0,1]$ such that $f (x_0) = x_0$.

2013 USA Team Selection Test, 3

In a table with $n$ rows and $2n$ columns where $n$ is a fixed positive integer, we write either zero or one into each cell so that each row has $n$ zeros and $n$ ones. For $1 \le k \le n$ and $1 \le i \le n$, we define $a_{k,i}$ so that the $i^{\text{th}}$ zero in the $k^{\text{th}}$ row is the $a_{k,i}^{\text{th}}$ column. Let $\mathcal F$ be the set of such tables with $a_{1,i} \ge a_{2,i} \ge \dots \ge a_{n,i}$ for every $i$ with $1 \le i \le n$. We associate another $n \times 2n$ table $f(C)$ from $C \in \mathcal F$ as follows: for the $k^{\text{th}}$ row of $f(C)$, we write $n$ ones in the columns $a_{n,k}-k+1, a_{n-1,k}-k+2, \dots, a_{1,k}-k+n$ (and we write zeros in the other cells in the row). (a) Show that $f(C) \in \mathcal F$. (b) Show that $f(f(f(f(f(f(C)))))) = C$ for any $C \in \mathcal F$.

LMT Accuracy Rounds, 2023 S1

Andrew writes down all of the prime numbers less than $50$. How many times does he write the digit $2$?

2023 Brazil Cono Sur TST, 3

Tags:
The integers from $1$ to $2022$ are written on cards placed in a row on a table. Each number appears only once and each card shows exactly one number. Esmeralda performs consecutively the following operations $1011$ times: • She chooses a card on the table and puts it in a box on her right. • Right after it, she picks the leftmost card on the table and puts it in a box on her left. At the end of the process, she calculates the sum of the numbers in the left box. For each initial configuration $P$ of the cards, let $S(P)$ be the maximum sum Esmeralda can achieve. Determine the number of initial configurations $P$ for which $S(P)$ achieves its least value.

1992 AMC 8, 9

Tags:
The population of a small town is $480$. The graph indicates the number of females and males in the town, but the vertical scale-values are omitted. How many males live in the town? [asy] draw((0,13)--(0,0)--(20,0)); draw((3,0)--(3,10)--(8,10)--(8,0)); draw((3,5)--(8,5)); draw((11,0)--(11,5)--(16,5)--(16,0)); label("$\textbf{POPULATION}$",(10,11),N); label("$\textbf{F}$",(5.5,0),S); label("$\textbf{M}$",(13.5,0),S); [/asy] $\text{(A)}\ 120 \qquad \text{(B)}\ 160 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 240 \qquad \text{(E)}\ 360$

1960 Czech and Slovak Olympiad III A, 3

Two different points $A, M$ are given in a plane, $AM = d > 0$. Let a number $v > 0$ be given. Construct a rhombus $ABCD$ with the height of length $v$ and $M$ being a midpoint of $BC$. Discuss conditions of solvability and determine number of solutions. Can the resulting quadrilateral $ABCD$ be a square?

2013 Pan African, 1

A positive integer $n$ is such that $n(n+2013)$ is a perfect square. a) Show that $n$ cannot be prime. b) Find a value of $n$ such that $n(n+2013)$ is a perfect square.

1995 Polish MO Finals, 1

How many subsets of $\{1, 2, ... , 2n\}$ do not contain two numbers with sum $2n+1$?

2020 Online Math Open Problems, 17

Tags:
Compute the number of integers $1 \leq n \leq 1024$ such that the sequence $\lceil n \rceil$, $\lceil n/2 \rceil$, $\lceil n/4 \rceil$, $\lceil n/8 \rceil$, $\ldots$ does not contain any multiple of $5$. [i]Proposed by Sean Li[/i]