This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 NIMO Problems, 3

Richard has a four infinitely large piles of coins: a pile of pennies (worth 1 cent each), a pile of nickels (5 cents), a pile of dimes (10 cents), and a pile of quarters (25 cents). He chooses one pile at random and takes one coin from that pile. Richard then repeats this process until the sum of the values of the coins he has taken is an integer number of dollars. (One dollar is 100 cents.) What is the expected value of this final sum of money, in cents? [i]Proposed by Lewis Chen[/i]

2024 HMIC, 1

In an empty $100 \times 100$ grid, $300$ cells are colored blue, $3$ in each row and each column. Compute the largest positive integer $k$ such that you can always recolor $k$ of these blue cells red so that no contiguous $2 \times 2$ square has four red cells. [i]Arul Kolla[/i]

1996 Singapore MO Open, 3

Let $n$ be a positive integer. Prove that there is no positive integer solution to thxe equation $(x + 2)^n - x^n = 1 + 7^n$.

2011 APMO, 4

Let $n$ be a fixed positive odd integer. Take $m+2$ [b]distinct[/b] points $P_0,P_1,\ldots ,P_{m+1}$ (where $m$ is a non-negative integer) on the coordinate plane in such a way that the following three conditions are satisfied: 1) $P_0=(0,1),P_{m+1}=(n+1,n)$, and for each integer $i,1\le i\le m$, both $x$- and $y$- coordinates of $P_i$ are integers lying in between $1$ and $n$ ($1$ and $n$ inclusive). 2) For each integer $i,0\le i\le m$, $P_iP_{i+1}$ is parallel to the $x$-axis if $i$ is even, and is parallel to the $y$-axis if $i$ is odd. 3) For each pair $i,j$ with $0\le i<j\le m$, line segments $P_iP_{i+1}$ and $P_jP_{j+1}$ share at most $1$ point. Determine the maximum possible value that $m$ can take.

2001 Tournament Of Towns, 6

Several numbers are written in a row. In each move, Robert chooses any two adjacent numbers in which the one on the left is greater than the one on the right, doubles each of them and then switches them around. Prove that Robert can make only a finite number of moves.

2012 Serbia JBMO TST, 3

Let $a, \overline{bcd}, \overline{aef}, \overline{cfg}, \overline{hci}, \overline{dea}, \overline{ifd}, \overline{jgf}, \overline{bfeg},\ldots$ be an increasing arithmetic progression. Find the $16$th term of this sequence.

Mid-Michigan MO, Grades 5-6, 2019

[b]p1.[/b] It takes $12$ months for Santa Claus to pack gifts. It would take $20$ months for his apprentice to do the job. If they work together, how long will it take for them to pack the gifts? [b]p2.[/b] All passengers on a bus sit in pairs. Exactly $2/5$ of all men sit with women, exactly $2/3$ of all women sit with men. What part of passengers are men? [b]p3.[/b] There are $100$ colored balls in a box. Every $10$-tuple of balls contains at least two balls of the same color. Show that there are at least $12$ balls of the same color in the box. [b]p4.[/b] There are $81$ wheels in storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that one can determine which wheel is incorrectly marked with four measurements. [b]p5.[/b] Remove from the figure below the specified number of matches so that there are exactly $5$ squares of equal size left: (a) $8$ matches (b) $4$ matches [img]https://cdn.artofproblemsolving.com/attachments/4/b/0c5a65f2d9b72fbea50df12e328c024a0c7884.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Sharygin Geometry Olympiad, 10.6

A quadrangle was drawn on the board, that you can inscribe and circumscribe a circle. Marked are the centers of these circles and the intersection point of the lines connecting the midpoints of the opposite sides, after which the quadrangle itself was erased. Restore it with a compass and ruler.

1995 Singapore MO Open, 1

Suppose that the rational numbers $a, b$ and $c$ are the roots of the equation $x^3+ax^2 + bx + c = 0$. Find all such rational numbers $a, b$ and $c$. Justify your answer

2024 BAMO, B

Tags: geometry
Amelia’s mother proposes a game. “Pick two of the shapes below,” she says to Amelia. (The shapes are an equilateral triangle, a parallelogram, an isosceles trapezoid, a kite, and an ellipse. These shapes are drawn to scale.) Amelia’s mother continues: “I will draw those two shapes on a sheet of paper, in whatever position and orientation I choose, without overlapping them. Then you draw a straight line that cuts both shapes, so that each shape is divided into two congruent halves.” [img]https://cdn.artofproblemsolving.com/attachments/e/7/c3dfe1e528d7be431b8afcc187b65b0c8f04fd.png[/img] Which two of the shapes should Amelia choose to guarantee that she can succeed? Given that choice of shapes, explain how Amelia can draw her line, what property of those shapes makes it possible for her to do so, and why this would not work with any other pair of these shapes.

2023 Moldova EGMO TST, 5

Find all pairs of real numbers $(x, y)$, that satisfy the system of equations: $$\left\{\begin{matrix} 6(1-x)^2=\dfrac{1}{y} \\ \\6(1-y)^2=\dfrac{1}{x}.\end{matrix}\right.$$

2017 All-Russian Olympiad, 1

$S=\sin{64x}+\sin{65x}$ and $C=\cos{64x}+\cos{65x}$ are both rational for some $x$. Prove, that for one of these sums both summands are rational too.

2012 BAMO, 3

Let $x_1,x_2,...,x_k$ be a sequence of integers. A rearrangement of this sequence (the numbers in the sequence listed in some other order) is called a [b]scramble[/b] if no number in the new sequence is equal to the number originally in its location. For example, if the original sequence is $1,3,3,5$ then $3,5,1,3$ is a scramble, but $3,3,1,5$ is not. A rearrangement is called a [b]two-two[/b] if exactly two of the numbers in the new sequence are each exactly two more than the numbers that originally occupied those locations. For example, $3,5,1,3$ is a two-two of the sequence $1,3,3,5$ (the first two values $3$ and $5$ of the new sequence are exactly two more than their original values $1$ and $3$). Let $n\geq 2$. Prove that the number of scrambles of $1,1,2,3,...,n-1,n$ is equal to the number of two-twos of $1,2,3,...,n,n+1$. (Notice that both sequences have $n+1$ numbers, but the first one contains two 1s.)

2019 AMC 10, 19

Tags: divisor
Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$ $\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

2024 Al-Khwarizmi IJMO, 7

Tags: geometry
Two circles with centers $O_{1}$ and $O_{2}$ intersect at $P$ and $Q$. Let $\omega$ be the circumcircle of the triangle $P O_{1} O_{2}$; the circle $\omega$ intersect the circles centered at $O_{1}$ and $O_{2}$ at points $A$ and $B$, respectively. The point $Q$ is inside triangle $P A B$ and $P Q$ intersects $\omega$ at $M$. The point $E$ on $\omega$ is such that $P Q=Q E$. Let $M E$ and $A B$ meet at $L$, prove that $\angle Q L A=\angle M L A$. [i]Proposed by Amir Parsa Hoseini Nayeri, Iran[/i]

2021 AMC 10 Fall, 21

Tags:
Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$? $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16$

2009 Pan African, 2

Find all functions $f:\mathbb{N}_0\to\mathbb{N}_0$ for which $f(0)=0$ and \[f(x^2-y^2)=f(x)f(y) \] for all $x,y\in\mathbb{N}_0$ with $x>y$.

2006 May Olympiad, 4

Tags: trapezoid , area , geometry
Let $ABCD$ be a trapezoid of bases $AB$ and $CD$ . Let $O$ be the intersection point of the diagonals $AC$ and $BD$. If the area of the triangle $ABC$ is $150$ and the area of the triangle $ACD$ is $120$, calculate the area of the triangle $BCO$.

1981 Austrian-Polish Competition, 5

Let $P(x) = x^4 + a_1x^3 + a_2x^2 + a_3x + a_4$ be a polynomial with rational coefficients. Show that if $P(x)$ has exactly one real root $\xi$, then $\xi$ is a rational number.

DMM Devil Rounds, 2003

[b]p1.[/b] Find the smallest positive integer which is $1$ more than multiple of $3$, $2$ more than a multiple of $4$, and $4$ more than a multiple of $7$. [b]p2.[/b] Let $p = 4$, and let $a =\sqrt1$, $b =\sqrt2$, $c =\sqrt3$, $...$. Compute the value of $(p-a)(p-b) ... (p-z)$. [b]p3.[/b] There are $6$ points on the circumference of a circle. How many convex polygons are there having vertices on these points? [b]p4.[/b] David and I each have a sheet of computer paper, mine evenly spaced by $19$ parallel lines into $20$ sections, and his evenly spaced by $29$ parallel lines into $30$ sections. If our two sheets are overlayed, how many pairs of lines are perfectly incident? [b]p5.[/b] A pyramid is created by stacking equilateral triangles of balls, each layer having one fewer ball per side than the triangle immediately beneath it. How many balls are used if the pyramid’s base has $5$ balls to a side? [b]p6.[/b] Call a positive integer $n$ good if it has $3$ digits which add to $4$ and if it can be written in the form $n = k^2$, where $k$ is also a positive integer. Compute the average of all good numbers. [b]p7.[/b] John’s birthday cake is a scrumptious cylinder of radius $6$ inches and height $3$ inches. If his friends cut the cake into $8$ equal sectors, what is the total surface area of a piece of birthday cake? [b]p8.[/b] Evaluate $\sum^{10}_{i=1}\sum^{10}_{j=1} ij$. [b]p9.[/b] If three numbers $a$, $b$, and $c$ are randomly selected from the interval $[-2, 2]$, what is the probability that $a^2 + b^2 + c^2 \ge 4$? [b]p10.[/b] Evaluate $\sum^{\infty}_{x=2} \frac{2}{x^2 - 1}.$ [b]p11.[/b] Consider $4x^2 - kx - 1 = 0$. If the roots of this polynomial are $\sin \theta$ and $\cos \theta$, compute $|k|$. [b]p12.[/b] Given that $65537 = 2^{16} + 1$ is a prime number, compute the number of primes of the form $2^n + 1$ (for $n \ge 0$) between $1$ and $10^6$. [b]p13.[/b] Compute $\sin^{-1}(36/85) + \cos^{-1}(4/5) + \cos^{-1}(15/17).$ [b]p14.[/b] Find the number of integers $n$, $1\le n \le 2003$, such that $n^{2003} - 1$ is a multiple of $10$. [b]p15.[/b] Find the number of integers $n,$ $1 \le n \le 120$, such that $n^2$ leaves remainder $1$ when divided by $120$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Akdeniz University MO, 4

$a_n$ sequence is a arithmetic sequence with all terms be positive integers. (for $a_n$ non-constant sequence) Let $p_n$ is greatest prime divisor of $a_n$. Prove that $$(\frac{a_n}{p_n})$$ sequence is infinity. [hide]Note: If we find a $M>0$ constant such that $x_n \leq M$ for all $n \in {\mathbb N}$'s, $(x_n)$ sequence is non-infinite, but we can't find $M$, $(x_n)$ sequence is infinity [/hide]

2022 Philippine MO, 8

The set $S = \{1, 2, \dots, 2022\}$ is to be partitioned into $n$ disjoint subsets $S_1, S_2, \dots, S_n$ such that for each $i \in \{1, 2, \dots, n\}$, exactly one of the following statements is true: (a) For all $x, y \in S_i$, with $x \neq y, \gcd(x, y) > 1.$ (b) For all $x, y \in S_i$, with $x \neq y, \gcd(x, y) = 1.$ Find the smallest value of $n$ for which this is possible.

2001 Hungary-Israel Binational, 5

Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. (a) Let $p$ be a prime. Consider the graph whose vertices are the ordered pairs $(x, y)$ with $x, y \in\{0, 1, . . . , p-1\}$ and whose edges join vertices $(x, y)$ and $(x' , y')$ if and only if $xx'+yy'\equiv 1 \pmod{p}$ . Prove that this graph does not contain $C_{4}$ . (b) Prove that for infinitely many values $n$ there is a graph $G_{n}$ with $e(G_{n}) \geq \frac{n\sqrt{n}}{2}-n$ that does not contain $C_{4}$.

2017 Denmark MO - Mohr Contest, 3

Tags: arc , geometry , area
The figure shows an arc $\ell$ on the unit circle and two regions $A$ and $B$. Prove that the area of $A$ plus the area of $B$ equals the length of $\ell$. [img]https://1.bp.blogspot.com/-SYoSrFowZ30/XzRz0ygiOVI/AAAAAAAAMUs/0FCduUoxKGwq0gSR-b3dtb3SvDjZ89x_ACLcBGAsYHQ/s0/2017%2BMohr%2Bp3.png[/img]

2016 Switzerland - Final Round, 3

Find all primes $p, q$ and natural numbers $n$ such that: $p(p+1)+q(q+1)=n(n+1)$