This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1950 AMC 12/AHSME, 5

If five geometric means are inserted between 8 and 5832, the fifth term in the geometric series: $\textbf{(A)}\ 648 \qquad \textbf{(B)}\ 832 \qquad \textbf{(C)}\ 1168 \qquad \textbf{(D)}\ 1944 \qquad \textbf{(E)}\ \text{None of these}$

2007 ITAMO, 4

Today is Barbara's birthday, and Alberto wants to give her a gift playing the following game. The numbers 0,1,2,...,1024 are written on a blackboard. First Barbara erases $2^{9}$ numbers, then Alberto erases $2^{8}$ numbers, then Barbara $2^{7}$ and so on, until there are only two numbers a,b left. Now Barbara earns $|a-b|$ euro. Find the maximum number of euro that Barbara can always win, independently of Alberto's strategy.

2025 CMIMC Combo/CS, 8

Divide a regular $8960$-gon into non-overlapping parallelograms. Suppose that $R$ of these parallelograms are rectangles. What is the minimum possible value of $R$?

2012 Miklós Schweitzer, 8

Tags:
For any function $f: \mathbb{R}^2\to \mathbb{R}$ consider the function $\Phi_f:\mathbb{R}^2\to [-\infty,\infty]$ for which $\Phi_f(x,y)=\limsup_{ z \to y} f(x,z)$ for any $(x,y) \in \mathbb{R}^2$. [list=a] [*]Is it true that if $f$ is Lebesgue measurable then $\Phi_f$ is also Lebesgue measurable?[/*] [*]Is it true that if $f$ is Borel measurable then $\Phi_f$ is also Borel measurable?[/*] [/list]

2022 Thailand Online MO, 9

The number $1$ is written on the blackboard. At any point, Kornny may pick two (not necessary distinct) of the numbers $a$ and $b$ written on the board and write either $ab$ or $\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}$ on the board as well. Determine all possible numbers that Kornny can write on the board in finitely many steps.

2023 Thailand Mathematical Olympiad, 1

Let $A$ be set of 20 consecutive positive integers, Which sum and product of elements in $A$ not divisible by 23. Prove that product of elements in $A$ is not perfect square

2007 Junior Balkan MO, 1

Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.

2006 MOP Homework, 4

Given a prime number $p > 2$. Find the least $n\in Z_+$, for which every set of $n$ perfect squares not divisible by $p$ contains nonempty subset with product of all it's elements equal to $1\ (\text{mod}\ p)$

2021 Turkey Junior National Olympiad, 3

Let $x, y, z$ be real numbers such that $$x+y+z=2, \;\;\;\; xy+yz+zx=1$$ Find the maximum possible value of $x-y$.

2020 LMT Fall, 11

Tags:
Cai and Lai are eating cookies. Their cookies are in the shape of $2$ regular hexagons glued to each other, and the cookies have area $18$ units. They each make a cut along the $2$ long diagonals of a cookie; this now makes four pieces for them to eat and enjoy. What is the minimum area among the four pieces? [i]Proposed by Richard Chen[/i]

2005 Rioplatense Mathematical Olympiad, Level 3, 3

Let $k$ be a positive integer. Show that for all $n>k$ there exist convex figures $F_{1},\ldots, F_{n}$ and $F$ such that there doesn't exist a subset of $k$ elements from $F_{1},..., F_{n}$ and $F$ is covered for this elements, but $F$ is covered for every subset of $k+1$ elements from $F_{1}, F_{2},....., F_{n}$.

2021 Cono Sur Olympiad, 4

In a heap there are $2021$ stones. Two players $A$ and $B$ play removing stones of the pile, alternately starting with $A$. A valid move for $A$ consists of remove $1, 2$ or $7$ stones. A valid move for B is to remove $1, 3, 4$ or $6$ stones. The player who leaves the pile empty after making a valid move wins. Determine if some of the players have a winning strategy. If such a strategy exists, explain it.

2009 AIME Problems, 4

In parallelogram $ ABCD$, point $ M$ is on $ \overline{AB}$ so that $ \frac{AM}{AB} \equal{} \frac{17}{1000}$ and point $ N$ is on $ \overline{AD}$ so that $ \frac{AN}{AD} \equal{} \frac{17}{2009}$. Let $ P$ be the point of intersection of $ \overline{AC}$ and $ \overline{MN}$. Find $ \frac{AC}{AP}$.

ICMC 6, 3

The numbers $1, 2, \dots , n$ are written on a blackboard and then erased via the following process:[list] [*] Before any numbers are erased, a pair of numbers is chosen uniformly at random and circled. [*] Each minute for the next $n -1$ minutes, a pair of numbers still on the blackboard is chosen uniformly at random and the smaller one is erased. [*] In minute $n$, the last number is erased. [/list] What is the probability that the smaller circled number is erased before the larger? [i]Proposed by Ethan Tan[/i]

2013 Stanford Mathematics Tournament, 23

Tags: vieta
Let $a$ and $b$ be the solutions to $x^2-7x+17=0$. Compute $a^4+b^4$.

2012-2013 SDML (High School), 6

Tags:
Naoki's favorite positive integer $n$ is a two-digit number with distinct digits. It also has the property that when it is divided by $10$, $12$, and $14$, the remainder has a units digit of one. What is the value of $n$?

2009 Today's Calculation Of Integral, 417

The functions $ f(x) ,\ g(x)$ satify that $ f(x) \equal{} \frac {x^3}{2} \plus{} 1 \minus{} x\int_0^x g(t)\ dt,\ g(x) \equal{} x \minus{} \int_0^1 f(t)\ dt$. Let $ l_1,\ l_2$ be the tangent lines of the curve $ y \equal{} f(x)$, which pass through the point $ (a,\ g(a))$ on the curve $ y \equal{} g(x)$. Find the minimum area of the figure bounded by the tangent tlines $ l_1,\ l_2$ and the curve $ y \equal{} f(x)$ .

2004 Junior Balkan Team Selection Tests - Romania, 2

Tags: inequalities
Let $ABC$ be a triangle with side lengths $a,b,c$, such that $a$ is the longest side. Prove that $\angle BAC = 90^\circ$ if and only if \[ (\sqrt { a+b } + \sqrt { a-b} )(\sqrt {a+c } + \sqrt { a-c } ) = (a+b+c) \sqrt 2. \]

2011 IFYM, Sozopol, 6

Let $\sum_{i=1}^n a_i x_i =0$, $a_i\in \mathbb{Z}$. It is known that however we color $\mathbb{N}$ with finite number of colors, then the upper equation has a solution $x_1,x_2,...,x_n$ in one color. Prove that there is some non-empty sum of its coefficients equal to 0.

1959 IMO Shortlist, 2

For what real values of $x$ is \[ \sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=A \] given a) $A=\sqrt{2}$; b) $A=1$; c) $A=2$, where only non-negative real numbers are admitted for square roots?

1997 Putnam, 3

Evaluate the following : \[ \int_{0}^{\infty}\left(x-\frac{x^3}{2}+\frac{x^5}{2\cdot 4}-\frac{x^7}{2\cdot 4\cdot 6}+\cdots \right)\;\left(1+\frac{x^2}{2^2}+\frac{x^4}{2^2\cdot 4^2}+\frac{x^6}{2^2\cdot 4^2\cdot 6^2}+\cdots \right)\,\mathrm{d}x \]

2014 India IMO Training Camp, 3

Starting with the triple $(1007\sqrt{2},2014\sqrt{2},1007\sqrt{14})$, define a sequence of triples $(x_{n},y_{n},z_{n})$ by $x_{n+1}=\sqrt{x_{n}(y_{n}+z_{n}-x_{n})}$ $y_{n+1}=\sqrt{y_{n}(z_{n}+x_{n}-y_{n})}$ $ z_{n+1}=\sqrt{z_{n}(x_{n}+y_{n}-z_{n})}$ for $n\geq 0$.Show that each of the sequences $\langle x_n\rangle _{n\geq 0},\langle y_n\rangle_{n\geq 0},\langle z_n\rangle_{n\geq 0}$ converges to a limit and find these limits.

2024 Bulgarian Winter Tournament, 12.3

Let $n$ be a positive integer and let $\mathcal{A}$ be a family of non-empty subsets of $\{1, 2, \ldots, n \}$ such that if $A \in \mathcal{A}$ and $A$ is subset of a set $B\subseteq \{1, 2, \ldots, n\}$, then $B$ is also in $\mathcal{A}$. Show that the function $$f(x):=\sum_{A \in \mathcal{A}} x^{|A|}(1-x)^{n-|A|}$$ is strictly increasing for $x \in (0,1)$.

2013 IMO Shortlist, G5

Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.

2020 Iran MO (3rd Round), 2

Find all polynomials $P$ with integer coefficients such that all the roots of $P^n(x)$ are integers. (here $P^n(x)$ means $P(P(...(P(x))...))$ where $P$ is repeated $n$ times)