This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1962 Swedish Mathematical Competition, 4

Which of the following statements are true? (A) $X$ implies $Y$, or $Y$ implies $X$, where $X$ is the statement, the lines $L_1, L_2, L_3$ lie in a plane, and $Y$ is the statement, each pair of the lines $L_1, L_2, L_3$ intersect. (B) Every sufficiently large integer $n$ satisfies $n = a^4 + b^4$ for some integers a, b. (C) There are real numbers $a_1, a_2,... , a_n$ such that $a_1 \cos x + a_2 \cos 2x +... + a_n \cos nx > 0$ for all real $x$.

2010 Belarus Team Selection Test, 6.2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

1988 AMC 8, 14

Tags:
$ \diamondsuit $ and $ \Delta $ are whole numbers and $ \diamondsuit\times\Delta =36 $. The largest possible value of $ \diamondsuit+\Delta $ is $ \text{(A)}\ 12\qquad\text{(B)}\ 13\qquad\text{(C)}\ 15\qquad\text{(D)}\ 20\ \qquad\text{(E)}\ 37 $

2024 AMC 8 -, 2

Tags:
What is the value of this expression in decimal form? \[\dfrac{44}{11}+\dfrac{110}{44}+\dfrac{44}{1100}\] $\textbf{(A) }6.4\qquad\textbf{(B) }6.504\qquad\textbf{(C) }6.54\qquad\textbf{(D) }6.9\qquad\textbf{(E) }6.94$

2019 LIMIT Category A, Problem 7

The digit in unit place of $1!+2!+\ldots+99!$ is $\textbf{(A)}~3$ $\textbf{(B)}~0$ $\textbf{(C)}~1$ $\textbf{(D)}~7$

1963 Miklós Schweitzer, 3

Let $ R\equal{}R_1\oplus R_2$ be the direct sum of the rings $ R_1$ and $ R_2$, and let $ N_2$ be the annihilator ideal of $ R_2$ (in $ R_2$). Prove that $ R_1$ will be an ideal in every ring $ \widetilde{R}$ containing $ R$ as an ideal if and only if the only homomorphism from $ R_1$ to $ N_2$ is the zero homomorphism. [Gy. Hajos]

2001 China Western Mathematical Olympiad, 2

$ ABCD$ is a rectangle of area 2. $ P$ is a point on side $ CD$ and $ Q$ is the point where the incircle of $ \triangle PAB$ touches the side $ AB$. The product $ PA \cdot PB$ varies as $ ABCD$ and $ P$ vary. When $ PA \cdot PB$ attains its minimum value, a) Prove that $ AB \geq 2BC$, b) Find the value of $ AQ \cdot BQ$.

2025 Bangladesh Mathematical Olympiad, P4

Let set $S$ be the smallest set of positive integers satisfying the following properties: [list] [*] $2$ is in set $S$. [*] If $n^2$ is in set $S$, then $n$ is also in set $S$. [*] If $n$ is in set $S$, then $(n+5)^2$ is also in set $S$. [/list] Determine which positive integers are not in set $S$.

1990 India Regional Mathematical Olympiad, 3

A square sheet of paper $ABCD$ is so folded that $B$ falls on the mid point of $M$ of $CD$. Prove that the crease will divide $BC$ in the ration $5 : 3$.

2024 ELMO Shortlist, N3

Given a positive integer $k$, find all polynomials $P$ of degree $k$ with integer coefficients such that for all positive integers $n$ where all of $P(n)$, $P(2024n)$, $P(2024^2n)$ are nonzero, we have $$\frac{\gcd(P(2024n), P(2024^2n))}{\gcd(P(n), P(2024n))}=2024^k.$$ [i]Allen Wang[/i]

2014 BMT Spring, 20

A certain type of Bessel function has the form $I(x) = \frac{1}{\pi} \int_0^{\pi}e^{x \cos \theta} d\theta$ for all real $x$. Evaluate $\int_0^{\infty} x I(2x) e^{-x^2}dx$.

1987 AMC 8, 8

Tags:
If $\text{A}$ and $\text{B}$ are nonzero digits, then the number of digits (not necessarily different) in the sum of the three whole numbers is \[\begin{tabular}[t]{cccc} 9 & 8 & 7 & 6 \\ & A & 3 & 2 \\ & & B & 1 \\ \hline \end{tabular}\] $\text{(A)}\ 4 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ \text{depends on the values of A and B}$

2013 Harvard-MIT Mathematics Tournament, 7

Tags:
There are are $n$ children and $n$ toys such that each child has a strict preference ordering on the toys. We want to distribute the toys: say a distribution $A$ dominates a distribution $ B \ne A $ if in $A$, each child receives at least as preferable of a toy as in $B$. Prove that if some distribution is not dominated by any other, then at least one child gets his/her favorite toy in that distribution.

2016-2017 SDML (Middle School), 4

Tags:
In a certain regular polygon, the measure of each interior angle is twice the measure of each exterior angle. How many sides does this regular polygon have?

2002 USAMTS Problems, 3

Tags:
Determine, with proof, the rational number $\dfrac{m}{n}$ that equals \[\tfrac{1}{1\sqrt2+2\sqrt1}+\tfrac{1}{2\sqrt3+3\sqrt2}+\tfrac{1}{3\sqrt4+4\sqrt3}+\ldots+\tfrac{1}{4012008\sqrt{4012009}+4012009\sqrt{4012008}}\]

2017 Middle European Mathematical Olympiad, 7

Determine all integers $n \geq 2$ such that there exists a permutation $x_0, x_1, \ldots, x_{n - 1}$ of the numbers $0, 1, \ldots, n - 1$ with the property that the $n$ numbers $$x_0, \hspace{0.3cm} x_0 + x_1, \hspace{0.3cm} \ldots, \hspace{0.3cm} x_0 + x_1 + \ldots + x_{n - 1}$$ are pairwise distinct modulo $n$.

2017 CCA Math Bonanza, L1.3

Triangle $ABC$ has points $A$ at $\left(0,0\right)$, $B$ at $\left(9,12\right)$, and $C$ at $\left(-6,8\right)$ in the coordinate plane. Find the length of the angle bisector of $\angle{BAC}$ from $A$ to where it intersects $BC$. [i]2017 CCA Math Bonanza Lightning Round #1.3[/i]

2002 Turkey Team Selection Test, 3

Tags: inequalities
A positive integer $n$ and real numbers $a_1,\dots, a_n$ are given. Show that there exists integers $m$ and $k$ such that \[|\sum\limits_{i=1}^m a_i -\sum\limits_{i=m+1}^n a_i | \leq |a_k|.\]

1979 Bulgaria National Olympiad, Problem 3

Each side of a triangle $ABC$ has been divided into $n+1$ equal parts. Find the number of triangles with the vertices at the division points having no side parallel to or lying at a side of $\triangle ABC$.

2022 Taiwan TST Round 2, A

Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\][i]Pakawut Jiradilok and Wijit Yangjit, Thailand[/i]

1993 Bundeswettbewerb Mathematik, 4

Does there exist a non-negative integer n, such that the first four digits of n! is 1993?

2013 Saudi Arabia Pre-TST, 2.4

$\vartriangle ABC$ is a triangle and $I_b. I_c$ its excenters opposite to $B,C$. Prove that $\vartriangle ABC$ is right at $A$ if and only if its area is equal to $\frac12 AI_b \cdot AI_c$.

2018 Mathematical Talent Reward Programme, SAQ: P 6

Tags: coloring
Let $d(n)$ be the number of divisors of $n,$ where $n$ is a natural number. Prove that the natural numbers can be colured by 2 colours in such way, that for any infinite increasing sequence $\left\{a_{1}, a_{2}, \cdots\right\}$ if $\left\{d\left(a_{1}\right), d\left(a_{2}\right), \cdots\right\}$ is an nonconstant geometric series then $\left\{a_{1}, a_{2}, \cdots\right\}$ does not bear same colour.

2006 AMC 10, 8

A square of area $40$ is inscribed in a semicircle as shown. What is the area of the semicircle? [asy] defaultpen(linewidth(0.8)); real r=sqrt(50), s=sqrt(10); draw(Arc(origin, r, 0, 180)); draw((r,0)--(-r,0), dashed); draw((s,0)--(s,2*s)--(-s,2*s)--(-s,0));[/asy] $ \textbf{(A) }20\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }30\pi\qquad\textbf{(D) }40\pi\qquad\textbf{(E) }50\pi $

1978 Romania Team Selection Test, 3

[b]a)[/b] Let $ D_1,D_2,D_3 $ be pairwise skew lines. Through every point $ P_2\in D_2 $ there is an unique common secant of these three lines that intersect $ D_1 $ at $ P_1 $ and $ D_3 $ at $ P_3. $ Let coordinate systems be introduced on $ D_2 $ and $ D_3 $ having as origin $ O_2, $ respectively, $ O_3. $ Find a relation between the coordinates of $ P_2 $ and $ P_3. $ [b]b)[/b] Show that there exist four pairwise skew lines with exactly two common secants. Also find examples with exactly one and with no common secants. [b]c)[/b] Let $ F_1,F_2,F_3,F_4 $ be any four secants of $ D_1,D_2, D_3. $ Prove that $ F_1,F_2, F_3, F_4 $ have infinitely many common secants.