This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 ELMO Shortlist, 2

For a positive integer $n$, let $s(n)$ be the number of ways that $n$ can be written as the sum of strictly increasing perfect $2010^{\text{th}}$ powers. For instance, $s(2) = 0$ and $s(1^{2010} + 2^{2010}) = 1$. Show that for every real number $x$, there exists an integer $N$ such that for all $n > N$, \[\frac{\max_{1 \leq i \leq n} s(i)}{n} > x.\] [i]Alex Zhu.[/i]

2023 Durer Math Competition (First Round), 3

Pythagoras drew some points in the plane and and connected some of these with segments. Now Tortillagoras wants to write a positive integer next to every point, such that one number divides another number if and only if these numbers are written next to points that Pythagoras has connected.Can Tortillagoras do this for the following drawings? [i]In part b), vertices in the same row or column but not adjacent are not connected.[/i] [img]https://cdn.artofproblemsolving.com/attachments/1/e/7356e39e44e45e3263275292af3719595e2dd2.png[/img]

1970 Putnam, A2

Tags: root , algebra , polynomial
Consider the locus given by the real polynomial equation $$ Ax^2 +Bxy+Cy^2 +Dx^3 +E x^2 y +F xy^2 +G y^3=0,$$ where $B^2 -4AC <0.$ Prove that there is a positive number $\delta$ such that there are no points of the locus in the punctured disk $$0 <x^2 +y^2 < \delta^2.$$

2014 Iran Team Selection Test, 5

Given a set $X=\{x_1,\ldots,x_n\}$ of natural numbers in which for all $1< i \leq n$ we have $1\leq x_i-x_{i-1}\leq 2$, call a real number $a$ [b]good[/b] if there exists $1\leq j \leq n$ such that $2|x_j-a|\leq 1$. Also a subset of $X$ is called [b]compact[/b] if the average of its elements is a good number. Prove that at least $2^{n-3}$ subsets of $X$ are compact. [i]Proposed by Mahyar Sefidgaran[/i]

2022 LMT Spring, 4

Jeff has a deck of $12$ cards: $4$ $L$s, $4$ $M$s, and $4$ $T$s. Armaan randomly draws three cards without replacement. The probability that he takes $3$ $L$s can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m +n$.

2004 Germany Team Selection Test, 3

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

1990 Baltic Way, 6

Let $ABCD$ be a quadrilateral with $AD = BC$ and $\angle DAB + \angle ABC = 120^\circ$. An equilateral triangle $DPC$ is erected in the exterior of the quadrilateral. Prove that the triangle $APB$ is also equilateral.

1990 Romania Team Selection Test, 1

Let $f : N \to N$ be a function such that the set $\{k | f(k) < k\}$ is finite. Prove that the set $\{k | g(f(k)) \le k\}$ is infinite for all functions $g : N \to N$.

1975 Dutch Mathematical Olympiad, 1

Tags: algebra
Are the following statements true? $x^7 \in Q \land x^{12} \in Q \Rightarrow x \in Q$, and $x^9 \in \land x^{12} \in Q \Rightarrow x \in Q$.

2007 Today's Calculation Of Integral, 168

Prove that $\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}$ diverge for $x>0.$

1989 Greece National Olympiad, 1

Consider two functions $f , \,g \,:\mathbb{R} \to \mathbb{R}$ such that from some $a>0$ holds $g(x)=f(x+a)$ for any $x \in \mathbb{R}$. If $f$ is even and $g$ is odd, prove that both functions are periodic.

2011 Today's Calculation Of Integral, 677

Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by $I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$. (1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$. (2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$. (3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$. Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$. [i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]

2019 Saudi Arabia JBMO TST, 2

In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2MD$

2014 Stanford Mathematics Tournament, 6

Tags: geometry
Let $E$ be an ellipse with major axis length $4$ and minor axis length $2$. Inscribe an equilateral triangle $ABC$ in $E$ such that $A$ lies on the minor axis and $BC$ is parallel to the major axis. Compute the area of $\vartriangle ABC$.

Durer Math Competition CD 1st Round - geometry, 2010.C3

The sides of a pool table are $3$ and $4$ meters long.We push a ball with an angle of $45^o$ at the sides. Is it true that it returns to where it started no matter where we started it from?

2011 Serbia National Math Olympiad, 1

On sides $AB, AC, BC$ are points $M, X, Y$, respectively, such that $AX=MX$; $BY=MY$. $K$, $L$ are midpoints of $AY$ and $BX$. $O$ is circumcenter of $ABC$, $O_1$, $O_2$ are symmetric with $O$ with respect to $K$ and $L$. Prove that $X, Y, O_1, O_2$ are concyclic.

2016 CCA Math Bonanza, I8

Tags:
Let $f(x) = x^2 + x + 1$. Determine the ordered pair $(p,q)$ of primes satisfying $f(p) = f(q) + 242$. [i]2016 CCA Math Bonanza #8[/i]

2008 Vietnam Team Selection Test, 1

Let $ m$ and $ n$ be positive integers. Prove that $ 6m | (2m \plus{} 3)^n \plus{} 1$ if and only if $ 4m | 3^n \plus{} 1$

2019 USA TSTST, 3

On an infinite square grid we place finitely many [i]cars[/i], which each occupy a single cell and face in one of the four cardinal directions. Cars may never occupy the same cell. It is given that the cell immediately in front of each car is empty, and moreover no two cars face towards each other (no right-facing car is to the left of a left-facing car within a row, etc.). In a [i]move[/i], one chooses a car and shifts it one cell forward to a vacant cell. Prove that there exists an infinite sequence of valid moves using each car infinitely many times. [i]Nikolai Beluhov[/i]

2017 Putnam, B2

Tags:
Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[N=a+(a+1)+(a+2)+\cdots+(a+k-1)\] for $k=2017$ but for no other values of $k>1.$ Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions?

2015 Bangladesh Mathematical Olympiad, 2

[b][u]BdMO National Higher Secondary Problem 3[/u][/b] Let $N$ be the number if pairs of integers $(m,n)$ that satisfies the equation $m^2+n^2=m^3$ Is $N$ finite or infinite?If $N$ is finite,what is its value?

2009 Kyiv Mathematical Festival, 6

Let $\{a_1,...,a_n\}\subset \{-1,1\}$ and $a>0$ . Denote by $X$ and $Y$ the number of collections $\{\varepsilon_1,...,\varepsilon_n\}\subset \{-1,1\}$, such that $$max_{1\le k\le n}(\varepsilon_1a_1+...+\varepsilon_ka_k) >\alpha$$ and $$\varepsilon_1a_1+...+\varepsilon_na_n>a$$ respectively. Prove that $X\le 2Y$.

1997 Estonia Team Selection Test, 1

Tags: interval , set
$(a)$ Is it possible to partition the segment $[0,1]$ into two sets $A$ and $B$ and to define a continuous function $f$ such that for every $x\in A \ f(x)$ is in $B$, and for every $x\in B \ f(x)$ is in $A$? $(b)$ The same question with $[0,1]$ replaced by $[0,1).$

2021 Turkey Team Selection Test, 5

In a non isoceles triangle $ABC$, let the perpendicular bisector of $[BC]$ intersect $(ABC)$ at $M$ and $N$ respectively. Let the midpoints of $[AM]$ and $[AN]$ be $K$ and $L$ respectively. Let $(ABK)$ and $(ABL)$ intersect $AC$ again at $D$ and $E$ respectively, let $(ACK)$ and $(ACL)$ intersect $AB$ again at $F$ and $G$ respectively. Prove that the lines $DF$, $EG$ and $MN$ are concurrent.

2007 Today's Calculation Of Integral, 252

Compare $ \displaystyle f(\theta) \equal{} \int_0^1 (x \plus{} \sin \theta)^2\ dx$ and $ \ g(\theta) \equal{} \int_0^1 (x \plus{} \cos \theta)^2\ dx$ for $ 0\leqq \theta \leqq 2\pi .$