This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 Azerbaijan Junior Mathematical Olympiad, 3

$65$ distinct natural numbers not exceeding $2016$ are given. Prove that among these numbers we can find four $a,b,c,d$ such that $a+b-c-d$ is divisible by $2016.$

2014 ITAMO, 6

A $(2n + 1) \times (2n + 1)$ grid, with $n> 0$, is colored in such a way that each of the cell is white or black. A cell is called [i]special[/i] if there are at least $n$ other cells of the same color in its row, and at least another $n$ cells of the same color in its column. (a) Prove that there are at least $2n + 1$ special boxes. (b) Provide an example where there are at most $4n$ special cells. (c) Determine, as a function of $n$, the minimum possible number of special cells.

2019 Vietnam TST, P2

For each positive integer $n$, show that the polynomial: $$P_n(x)=\sum _{k=0}^n2^k\binom{2n}{2k}x^k(x-1)^{n-k}$$ has $n$ real roots.

1966 IMO Longlists, 1

Given $n>3$ points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) $3$ of the given points and not containing any other of the $n$ points in its interior ?

1988 IMO Longlists, 35

Tags: induction , limit , algebra
A sequence of numbers $a_n, n = 1,2, \ldots,$ is defined as follows: $a_1 = \frac{1}{2}$ and for each $n \geq 2$ \[ a_n = \frac{2 n - 3}{2 n} a_{n-1}. \] Prove that $\sum^n_{k=1} a_k < 1$ for all $n \geq 1.$

2018 May Olympiad, 1

You have a $4$-digit whole number that is a perfect square. Another number is built adding $ 1$ to the unit's digit, subtracting $ 1$ from the ten's digit, adding $ 1$ to the hundred's digit and subtracting $ 1$ from the ones digit of one thousand. If the number you get is also a perfect square, find the original number. It's unique?

2024 Czech-Polish-Slovak Junior Match, 4

How many positive integers $n<2024$ are divisible by $\lfloor \sqrt{n}\rfloor-1$?

2015 Polish MO Finals, 1

Solve the system $$\begin{cases} x+y+z=1\\ x^5+y^5+z^5=1\end{cases}$$ in real numbers.

2010 Brazil Team Selection Test, 3

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2014 Regional Olympiad of Mexico Center Zone, 2

Let $x_1$, $x_2$,$x_3$, $y_1$, $y_2$, and $y_3 $ be positive real numbers, such that $x_1 + y_2 = x_2 + y_3 = x_3 + y_1 =1$. Prove that $$ x_1y_1 + x_2y_2 + x_3y_3 <1$$

2019 Saudi Arabia JBMO TST, 3

How many natural numbers $n$ satisfy the following conditions: i) $219<=n<=2019$, ii) there exist integers $x, y$, so that $1<=x<n<y$, and $y$ is divisible by all natural numbers from $1$ to $n$ with the exception of the numbers $x$ and $x + 1$ with which $y$ is not divisible by.

1969 IMO Shortlist, 34

$(HUN 1)$ Let $a$ and $b$ be arbitrary integers. Prove that if $k$ is an integer not divisible by $3$, then $(a + b)^{2k}+ a^{2k} +b^{2k}$ is divisible by $a^2 +ab+ b^2$

2015 Purple Comet Problems, 1

Tags:
Arvin ate 11 halves of tarts, Bernice ate 12 quarters of tarts, Chrisandra ate 13 eighths of tarts, and Drake ate 14 sixteenths of tarts. How many tarts were eaten?

2022 Taiwan TST Round 2, 5

Let $ABCDE$ be a pentagon inscribed in a circle $\Omega$. A line parallel to the segment $BC$ intersects $AB$ and $AC$ at points $S$ and $T$, respectively. Let $X$ be the intersection of the line $BE$ and $DS$, and $Y$ be the intersection of the line $CE$ and $DT$. Prove that, if the line $AD$ is tangent to the circle $\odot(DXY)$, then the line $AE$ is tangent to the circle $\odot(EXY)$. [i]Proposed by ltf0501.[/i]

2016 Saudi Arabia GMO TST, 1

Let $ABC$ be an acute, non-isosceles triangle which is inscribed in a circle $(O)$. A point $I$ belongs to the segment $BC$. Denote by $H$ and $K$ the projections of $I$ on $AB$ and $AC$, respectively. Suppose that the line $HK$ intersects $(O)$ at $M, N$ ($H$ is between $M, K$ and $K$ is between $H, N$). Prove the following assertions: a) If $A$ is the center of the circle $(IMN)$, then $BC$ is tangent to $(IMN)$. b) If $I$ is the midpoint of $BC$, then $BC$ is equal to $4$ times of the distance between the centers of two circles $(ABK)$ and $(ACH)$.

2012 Poland - Second Round, 1

Tags: algebra
$a,b,c,d\in\mathbb{R}$, solve the system of equations: \[ \begin{cases} a^3+b=c \\ b^3+c=d \\ c^3+d=a \\ d^3+a=b \end{cases} \]

2019 Oral Moscow Geometry Olympiad, 6

In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.

2008 Cuba MO, 8

Let $ABC$ an acute-angle triangle. Let $R$ be a rectangle with vertices in the edges of $ABC$. Let $O$ be the center of $R$. a) Find the locus of all the points $O$. b) Decide if there is a point that is the center of three of these rectangles.

2012 JBMO ShortLists, 6

Tags: geometry
Let $O_1$ be a point in the exterior of the circle $\omega$ of center $O$ and radius $R$ , and let $O_1N$ , $O_1D$ be the tangent segments from $O_1$ to the circle. On the segment $O_1N$ consider the point $B$ such that $BN=R$ .Let the line from $B$ parallel to $ON$ intersect the segment $O_1D$ at $C$ . If $A$ is a point on the segment $O_1D$ other than $C$ so that $BC=BA=a$ , and if the incircle of the triangle $ABC$ has radius $r$ , then find the area of $\triangle ABC$ in terms of $a ,R ,r$.

2009 Peru MO (ONEM), 3

a) On a circumference $8$ points are marked. We say that Juliana does an “T-operation ” if she chooses three of these points and paint the sides of the triangle that they determine, so that each painted triangle has at most one vertex in common with a painted triangle previously. What is the greatest number of “T-operations” that Juliana can do? b) If in part (a), instead of considering $8$ points, $7$ points are considered, what is the greatest number of “T operations” that Juliana can do?

2002 USAMTS Problems, 2

Find four distinct positive integers, $a$, $b$, $c$, and $d$, such that each of the four sums $a+b+c$, $a+b+d$,$a+c+d$, and $b+c+d$ is the square of an integer. Show that infinitely many quadruples $(a,b,c,d)$ with this property can be created.

2011 Grand Duchy of Lithuania, 1

Integers $a, b$ and $c$ satisfy the condition $ab + bc + ca = 1$. Is it true that the number $(1+a^2)(1+b^2)(1+c^2)$ is a perfect square? Why?

2022 AIME Problems, 5

Tags:
A straight river that is $264$ meters wide flows from west to east at a rate of $14$ meters per minute. Melanie and Sherry sit on the south bank of the river with Melanie a distance of $D$ meters downstream from Sherry. Relative to the water, Melanie swims at $80$ meters per minute, and Sherry swims at $60$ meters per minute. At the same time, Melanie and Sherry begin swimming in straight lines to a point on the north bank of the river that is equidistant from their starting positions. The two women arrive at this point simultaneously. Find $D$.

2016 Indonesia Juniors, day 1

p1. Find all real numbers that satisfy the equation $$(1 + x^2 + x^4 + .... + x^{2014})(x^{2016} + 1) = 2016x^{2015}$$ p2. Let $A$ be an integer and $A = 2 + 20 + 201 + 2016 + 20162 + ... + \underbrace{20162016...2016}_{40\,\, digits}$ Find the last seven digits of $A$, in order from millions to units. p3. In triangle $ABC$, points $P$ and $Q$ are on sides of $BC$ so that the length of $BP$ is equal to $CQ$, $\angle BAP = \angle CAQ$ and $\angle APB$ is acute. Is triangle $ABC$ isosceles? Write down your reasons. p4. Ayu is about to open the suitcase but she forgets the key. The suitcase code consists of nine digits, namely four $0$s (zero) and five $1$s. Ayu remembers that no four consecutive numbers are the same. How many codes might have to try to make sure the suitcase is open? p5. Fulan keeps $100$ turkeys with the weight of the $i$-th turkey, being $x_i$ for $i\in\{1, 2, 3, ... , 100\}$. The weight of the $i$-th turkey in grams is assumed to follow the function $x_i(t) = S_it + 200 - i$ where $t$ represents the time in days and $S_i$ is the $i$-th term of an arithmetic sequence where the first term is a positive number $a$ with a difference of $b =\frac15$. It is known that the average data on the weight of the hundred turkeys at $t = a$ is $150.5$ grams. Calculate the median weight of the turkey at time $t = 20$ days.

2014 Taiwan TST Round 3, 6

Players $A$ and $B$ play a "paintful" game on the real line. Player $A$ has a pot of paint with four units of black ink. A quantity $p$ of this ink suffices to blacken a (closed) real interval of length $p$. In every round, player $A$ picks some positive integer $m$ and provides $1/2^m $ units of ink from the pot. Player $B$ then picks an integer $k$ and blackens the interval from $k/2^m$ to $(k+1)/2^m$ (some parts of this interval may have been blackened before). The goal of player $A$ is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened. Decide whether there exists a strategy for player $A$ to win in a finite number of moves.