This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 All-Russian Olympiad Regional Round, 11.3

Point $K$ lies on the circumcircle of a rectangle $ABCD$. Line $CK$ intersects line segment $AD$ at point $M$ so that $AM:MD=2$. $O$ is the center the rectangle. Prove that the centroid of triangle $OKD$ belongs to the circumcircle of triangle $COD$. (Author: V. Shmarov)

2023 MIG, 7

Tags:
At a length of $104$ miles, the Danyang-Kushan Bridge holds the title for being the longest bridge in the world. A car travels at a constant speed of $39$ miles per hour across the Danyang-Kushan Bridge. How long does it take the car to travel across the entire bridge? $\textbf{(A) }\text{2 hours, 12 minutes} \qquad \textbf{(B) }\text{2 hours, 20 minutes} \qquad \textbf{(C) }\text{2 hours, 25 minutes}$\\ $\textbf{(D) }\text{2 hours, 30 minutes} \qquad \textbf{(E) }\text{2 hours, 40 minutes}$

1969 Putnam, B1

Let $n$ be a positive integer such that $24\mid n+1$. Prove that the sum of the positive divisors of $n$ is divisble by 24.

2010 Contests, 4

The sequence of Fibonnaci's numbers if defined from the two first digits $f_1=f_2=1$ and the formula $f_{n+2}=f_{n+1}+f_n$, $\forall n \in N$. [b](a)[/b] Prove that $f_{2010} $ is divisible by $10$. [b](b)[/b] Is $f_{1005}$ divisible by $4$? Albanian National Mathematical Olympiad 2010---12 GRADE Question 4.

2021 Putnam, B3

Tags:
Let $h(x,y)$ be a real-valued function that is twice continuously differentiable throughout $\mathbb{R}^2$, and define \[ \rho (x,y)=yh_x -xh_y . \] Prove or disprove: For any positive constants $d$ and $r$ with $d>r$, there is a circle $S$ of radius $r$ whose center is a distance $d$ away from the origin such that the integral of $\rho$ over the interior of $S$ is zero.

1981 IMO, 3

The function $f(x,y)$ satisfies: $f(0,y)=y+1, f(x+1,0) = f(x,1), f(x+1,y+1)=f(x,f(x+1,y))$ for all non-negative integers $x,y$. Find $f(4,1981)$.

2021 Pan-American Girls' Math Olympiad, Problem 3

Tags:
Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R}\longrightarrow \mathbb{R}$ so that the equality $$f(x+yf(x+y)) +xf(x)= f(xf(x+y+1))+y^2$$ is true for any real numbers $x,y$.

2009 AMC 10, 11

One dimension of a cube is increased by $ 1$, another is decreased by $ 1$, and the third is left unchanged. The volume of the new rectangular solid is $ 5$ less than that of the cube. What was the volume of the cube? $ \textbf{(A)}\ 8 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 125 \qquad \textbf{(E)}\ 216$

2022 Cyprus TST, 3

Let $ABC$ be an obtuse-angled triangle with $ \angle ABC>90^{\circ}$, and let $(c)$ be its circumcircle. The internal angle bisector of $\angle BAC$ meets again the circle $(c)$ at the point $E$, and the line $BC$ at the point $D$. The circle of diameter $DE$ meets the circle $(c)$ at the point $H$. If the line $HE$ meets the line $BC$ at the point $K$, prove that: (a) the points $K, H, D$ and $A$ are concyclic (b) the line $AH$ passes through the point of intersection of the tangents to the circle $(c)$ at the points $B$ and $C$.

2009 Pan African, 1

Consider $n$ children in a playground, where $n\ge 2$. Every child has a coloured hat, and every pair of children is joined by a coloured ribbon. For every child, the colour of each ribbon held is different, and also different from the colour of that child’s hat. What is the minimum number of colours that needs to be used?

1977 Polish MO Finals, 3

Consider the set $A = \{0, 1, 2, . . . , 2^{2n} - 1\}$. The function $f : A \rightarrow A$ is given by: $f(x_0 + 2x_1 + 2^2x_2 + ... + 2^{2n-1}x_{2n-1})=$$(1 - x_0) + 2x_1 + 2^2(1 - x_2) + 2^3x_3 + ... + 2^{2n-1}x_{2n-1}$ for every $0-1$ sequence $(x_0, x_1, . . . , x_{2n-1})$. Show that if $a_1, a_2, . . . , a_9$ are consecutive terms of an arithmetic progression, then the sequence $f(a_1), f(a_2), . . . , f(a_9)$ is not increasing.

1955 Putnam, A1

Tags:
Prove that there is no set of integers $m, n, p$ except $0, 0, 0$ for which \[m + n \sqrt2 + p \sqrt3 = 0.\]

2011 USA Team Selection Test, 1

In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$. [i]Proposed by Zuming Feng[/i]

1994 ITAMO, 6

The squares of a $10 \times 10$ chessboard are labelled with $1,2,...,100 $ in the usual way: the $i$-th row contains the numbers $10i -9,10i - 8,...,10i$ in increasing order. The signs of fifty numbers are changed so that each row and each column contains exactly five negative numbers. Show that after this change the sum of all numbers on the chessboard is zero.

2007 Stanford Mathematics Tournament, 1

Tags:
There are three bins: one with 30 apples, one with 30 oranges, and one with 15 of each. Each is labeled "apples," "oranges," or "mixed." Given that all three labels are wrong, how many pieces of fruit must you look at to determine the correct labels?

2007 Romania Team Selection Test, 3

Let $A_{1}A_{2}\ldots A_{2n}$ be a convex polygon and let $P$ be a point in its interior such that it doesn't lie on any of the diagonals of the polygon. Prove that there is a side of the polygon such that none of the lines $PA_{1}$, $\ldots$, $PA_{2n}$ intersects it in its interior.

Oliforum Contest IV 2013, 6

Let $P$ be a polyhedron whose faces are colored black and white so that there are more black faces and no two black faces are adjacent. Show that $P$ is not circumscribed about a sphere.

2019 LIMIT Category A, Problem 1

Let $p(x)$ be a polynomial of degree $4$ with leading coefficient $1$. Suppose $p(1)=1$, $p(2)=2$, $p(3)=3$ and $p(4)=4$. Then $p(5)=$? $\textbf{(A)}~5$ $\textbf{(B)}~\frac{25}6$ $\textbf{(C)}~29$ $\textbf{(D)}~35$

2010 CHMMC Winter, Individual

[b]p1.[/b] Compute the degree of the least common multiple of the polynomials $x - 1$, $x^2 - 1$, $x^3 - 1$,$...$, $x^{10} -1$. [b]p2.[/b] A line in the $xy$ plane is called wholesome if its equation is $y = mx+b$ where $m$ is rational and $b$ is an integer. Given a point with integer coordinates $(x,y)$ on a wholesome line $\ell$, let $r$ be the remainder when $x$ is divided by $7$, and let $s$ be the remainder when y is divided by $7$. The pair $(r, s)$ is called an [i]ingredient[/i] of the line $\ell$. The (unordered) set of all possible ingredients of a wholesome line $\ell$ is called the [i]recipe [/i] of $\ell$. Compute the number of possible recipes of wholesome lines. [b]p3.[/b] Let $\tau (n)$ be the number of distinct positive divisors of $n$. Compute $\sum_{d|15015} \tau (d)$, that is, the sum of $\tau (d)$ for all $d$ such that $d$ divides $15015$. [b]p4.[/b] Suppose $2202010_b - 2202010_3 = 71813265_{10}$. Compute $b$. ($n_b$ denotes the number $n$ written in base $b$.) [b]p5.[/b] Let $x = (3 -\sqrt5)/2$. Compute the exact value of $x^8 + 1/x^8$. [b]p6.[/b] Compute the largest integer that has the same number of digits when written in base $5$ and when written in base $7$. Express your answer in base $10$. [b]p7.[/b] Three circles with integer radii $a$, $b$, $c$ are mutually externally tangent, with $a \le b \le c$ and $a < 10$. The centers of the three circles form a right triangle. Compute the number of possible ordered triples $(a, b, c)$. [b]p8.[/b] Six friends are playing informal games of soccer. For each game, they split themselves up into two teams of three. They want to arrange the teams so that, at the end of the day, each pair of players has played at least one game on the same team. Compute the smallest number of games they need to play in order to achieve this. [b]p9.[/b] Let $A$ and $B$ be points in the plane such that $AB = 30$. A circle with integer radius passes through $A$ and $B$. A point $C$ is constructed on the circle such that $AC$ is a diameter of the circle. Compute all possible radii of the circle such that $BC$ is a positive integer. [b]p10.[/b] Each square of a $3\times 3$ grid can be colored black or white. Two colorings are the same if you can rotate or reflect one to get the other. Compute the total number of unique colorings. [b]p11.[/b] Compute all positive integers $n$ such that the sum of all positive integers that are less than $n$ and relatively prime to $n$ is equal to $2n$. [b]p12.[/b] The distance between a point and a line is defined to be the smallest possible distance between the point and any point on the line. Triangle $ABC$ has $AB = 10$, $BC = 21$, and $CA = 17$. Let $P$ be a point inside the triangle. Let $x$ be the distance between $P$ and $\overleftrightarrow{BC}$, let $y$ be the distance between $P$ and $\overleftrightarrow{CA}$, and let $z$ be the distance between $P$ and $\overleftrightarrow{AB}$. Compute the largest possible value of the product $xyz$. [b]p13.[/b] Alice, Bob, David, and Eve are sitting in a row on a couch and are passing back and forth a bag of chips. Whenever Bob gets the bag of chips, he passes the bag back to the person who gave it to him with probability $\frac13$ , and he passes it on in the same direction with probability $\frac23$ . Whenever David gets the bag of chips, he passes the bag back to the person who gave it to him with probability $\frac14$ , and he passes it on with probability $\frac34$ . Currently, Alice has the bag of chips, and she is about to pass it to Bob when Cathy sits between Bob and David. Whenever Cathy gets the bag of chips, she passes the bag back to the person who gave it to her with probability $p$, and passes it on with probability $1-p$. Alice realizes that because Cathy joined them on the couch, the probability that Alice gets the bag of chips back before Eve gets it has doubled. Compute $p$. [b]p14.[/b] Circle $O$ is in the plane. Circles $A$, $B$, and $C$ are congruent, and are each internally tangent to circle $O$ and externally tangent to each other. Circle $X$ is internally tangent to circle $O$ and externally tangent to circles $A$ and $B$. Circle $X$ has radius $1$. Compute the radius of circle $O$. [img]https://cdn.artofproblemsolving.com/attachments/f/d/8ddab540dca0051f660c840c0432f9aa5fe6b0.png[/img] [b]p15.[/b] Compute the number of primes $p$ less than 100 such that $p$ divides $n^2 +n+1$ for some integer $n$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 India IMO Training Camp, 8

Tags: geometry , inradius
Let $ABC$ be a triangle, and let $r, r_1, r_2, r_3$ denoted its inradius and the exradii opposite the vertices $A,B,C$, respectively. Suppose $a>r_1, b>r_2, c>r_3$. Prove that (a) triangle $ABC$ is acute, (b) $a+b+c>r+r_1+r_2+r_3$.

2024 Indonesia TST, 5

Tags: geometry
Line $\ell$ intersects sides $BC$ and $AD$ of cyclic quadrilateral $ABCD$ in its interior points $R$ and $S$, respectively, and intersects ray $DC$ beyond point $C$ at $Q$, and ray $BA$ beyond point $A$ at $P$. Circumcircles of the triangles $QCR$ and $QDS$ intersect at $N \neq Q$, while circumcircles of the triangles $PAS$ and $PBR$ intersect at $M\neq P$. Let lines $MP$ and $NQ$ meet at point $X$, lines $AB$ and $CD$ meet at point $K$ and lines $BC$ and $AD$ meet at point $L$. Prove that point $X$ lies on line $KL$.

2018 China Second Round Olympiad, 1

Tags: algebra
Let $a,b \in \mathbb R,f(x)=ax+b+\frac{9}{x}.$ Prove that there exists $x_0 \in \left[1,9 \right],$ such that $|f(x_0)| \ge 2.$

2019 Jozsef Wildt International Math Competition, W. 50

Tags: inequalities
Let $x$, $y$, $z > 0$, $\lambda \in (-\infty, 0) \cup (1,+\infty)$ such that $x + y + z = 1$. Then$$\sum \limits_{cyc} x^{\lambda}y^{\lambda}\sum \limits_{cyc}\frac{1}{(x+y)^{2\lambda}}\geq 9\left(\frac{1}{4}-\frac{1}{9}\sum \limits_{cyc}\frac{1}{(x+1)^2} \right)^{\lambda}$$

1984 Poland - Second Round, 6

The sequence $(x_n)$ is defined by formulas $$ x_1=c,\; x_{n+1} = cx_n + \sqrt{(c^2-1)(x_n^2-1)} \quad\text{ for }\quad n=1,2,\ldots$$ Prove that if $ c $ is a natural number, then all numbers $ x_n $ are natural.

2015 Belarus Team Selection Test, 3

The incircle of the triangle $ABC$ touches the sides $AC$ and $BC$ at points $P$ and $Q$ respectively. $N$ and $M$ are the midpoints of $AC$ and $BC$ respectively. Let $X=AM\cap BP, Y=BN\cap AQ$. Given $C,X,Y$ are collinear, prove that $CX$ is the angle bisector of the angle $ACB$. I. Gorodnin