This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 CMIMC, 5

Tags: geometry
Let $\mathcal{P}$ be a parallelepiped with side lengths $x$, $y$, and $z$. Suppose that the four space diagonals of $\mathcal{P}$ have lengths $15$, $17$, $21$, and $23$. Compute $x^2+y^2+z^2$.

1966 IMO Shortlist, 63

Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$. [i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$, where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.

2014 Contests, 3

Find all pairs $(m, n)$ of positive integers satsifying $m^6+5n^2=m+n^3$.

2021 AMC 12/AHSME Spring, 24

Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$. Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$. If $QR=3\sqrt3$ and $\angle QPR=60^\circ$, then the area of $\triangle PQR$ is $\frac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$? $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$

2009 Indonesia TST, 3

Let $ ABC$ be an isoceles triangle with $ AC\equal{}BC$. A point $ P$ lies inside $ ABC$ such that \[ \angle PAB \equal{} \angle PBC, \angle PAC \equal{} \angle PCB.\] Let $ M$ be the midpoint of $ AB$ and $ K$ be the intersection of $ BP$ and $ AC$. Prove that $ AP$ and $ PK$ trisect $ \angle MPC$.

1971 Czech and Slovak Olympiad III A, 3

Consider positive integers $2,3,\ldots,n-1,n$ where $n\ge96.$ Consider any partition in two (sub)sets. Show that at least one of these two sets always contains two numbers and their product. Show that the statement does not hold for $n=95,$ e.g. there is a partition without the mentioned property.

2014 Peru IMO TST, 12

Every single point on the plane with integer coordinates is coloured either red, green or blue. Find the least possible positive integer $n$ with the following property: no matter how the points are coloured, there is always a triangle with area $n$ that has its $3$ vertices with the same colour.

1963 AMC 12/AHSME, 13

Tags:
If $2^a+2^b=3^c+3^d$, the number of integers $a,b,c,d$ which can possibly be negative, is, at most: $\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 0$

2017 Costa Rica - Final Round, G4

In triangle $ABC$ with incenter $I$ and circumcircle $\omega$, the tangent through $C$ to $\omega$ intersects $AB$ at point $D$. The angle bisector of $\angle CDB$ intersects $AI$ and $BI$ at $E$ and $F$, respectively. Let $M$ be the midpoint of $[EF]$. Prove that line $MI$ passes through the midpoint of arc $ACB$ of $w$ .

2002 Federal Math Competition of S&M, Problem 1

Tags: inequalities
For any positive numbers $a,b,c$ and natural numbers $n,k$ prove the inequality $$\frac{a^{n+k}}{b^n}+\frac{b^{n+k}}{c^n}+\frac{c^{n+k}}{a^n}\ge a^k+b^k+c^k.$$

1986 IMO Longlists, 42

The integers $1, 2, \cdots, n^2$ are placed on the fields of an $n \times n$ chessboard $(n > 2)$ in such a way that any two fields that have a common edge or a vertex are assigned numbers differing by at most $n + 1$. What is the total number of such placements?

2002 AMC 10, 11

Tags:
Jamal wants to store $ 30$ computer files on floppy disks, each of which has a capacity of $ 1.44$ megabytes (MB). Three of his files require $ 0.8$ MB of memory each, $ 12$ more require $ 0.7$ MB each, and the remaining $ 15$ require $ 0.4$ MB each. No file can be split between floppy disks. What is the minimal number of floppy disks that will hold all the files? $ \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 13 \qquad \textbf{(C)}\ 14 \qquad \textbf{(D)}\ 15 \qquad \textbf{(E)}\ 16$

1969 IMO Shortlist, 4

Tags: locus , conic , geometry
$(BEL 4)$ Let $O$ be a point on a nondegenerate conic. A right angle with vertex $O$ intersects the conic at points $A$ and $B$. Prove that the line $AB$ passes through a fixed point located on the normal to the conic through the point $O.$

1994 Baltic Way, 16

The Wonder Island is inhabited by Hedgehogs. Each Hedgehog consists of three segments of unit length having a common endpoint, with all three angles between them $120^{\circ}$. Given that all Hedgehogs are lying flat on the island and no two of them touch each other, prove that there is a finite number of Hedgehogs on Wonder Island.

2000 Moldova National Olympiad, Problem 1

Find all positive integers $a$ for which $a^{2000}-1$ is divisible by $10$.

2019 Flanders Math Olympiad, 3

In triangle $\vartriangle ABC$ holds $\angle A= 40^o$ and $\angle B = 20^o$ . The point $P$ lies on the line $AC$ such that $C$ is between $A$ and $P$ and $| CP | = | AB | - | BC |$. Calculate the $\angle CBP$.

2024 Azerbaijan JBMO TST, 3

There are $n$ blocks placed on the unit squares of a $n \times n$ chessboard such that there is exactly one block in each row and each column. Find the maximum value $k$, in terms of $n$, such that however the blocks are arranged, we can place $k$ rooks on the board without any two of them threatening each other. (Two rooks are not threatening each other if there is a block lying between them.)

2012 IFYM, Sozopol, 3

The polynomial $p(x)$ is of degree $9$ and $p(x)-1$ is exactly divisible by $(x-1)^{5}$. Given that $p(x) + 1$ is exactly divisible by $(x+1)^{5}$, find $p(x)$.

2002 AMC 8, 10

Tags:
$\textbf{Juan's Old Stamping Grounds}$ Juan organizes the stamps in his collection by country and by the decade in which they were issued. The prices he paid for them at a stamp shop were: Brazil and France, 6 cents each, Peru 4 cents each, and Spain 5 cents each. (Brazil and Peru are South American countries and France and Spain are in Europe.) [asy] /* AMC8 2002 #8, 9, 10 Problem */ size(3inch, 1.5inch); for ( int y = 0; y <= 5; ++y ) { draw((0,y)--(18,y)); } draw((0,0)--(0,5)); draw((6,0)--(6,5)); draw((9,0)--(9,5)); draw((12,0)--(12,5)); draw((15,0)--(15,5)); draw((18,0)--(18,5)); draw(scale(0.8)*"50s", (7.5,4.5)); draw(scale(0.8)*"4", (7.5,3.5)); draw(scale(0.8)*"8", (7.5,2.5)); draw(scale(0.8)*"6", (7.5,1.5)); draw(scale(0.8)*"3", (7.5,0.5)); draw(scale(0.8)*"60s", (10.5,4.5)); draw(scale(0.8)*"7", (10.5,3.5)); draw(scale(0.8)*"4", (10.5,2.5)); draw(scale(0.8)*"4", (10.5,1.5)); draw(scale(0.8)*"9", (10.5,0.5)); draw(scale(0.8)*"70s", (13.5,4.5)); draw(scale(0.8)*"12", (13.5,3.5)); draw(scale(0.8)*"12", (13.5,2.5)); draw(scale(0.8)*"6", (13.5,1.5)); draw(scale(0.8)*"13", (13.5,0.5)); draw(scale(0.8)*"80s", (16.5,4.5)); draw(scale(0.8)*"8", (16.5,3.5)); draw(scale(0.8)*"15", (16.5,2.5)); draw(scale(0.8)*"10", (16.5,1.5)); draw(scale(0.8)*"9", (16.5,0.5)); label(scale(0.8)*"Country", (3,4.5)); label(scale(0.8)*"Brazil", (3,3.5)); label(scale(0.8)*"France", (3,2.5)); label(scale(0.8)*"Peru", (3,1.5)); label(scale(0.8)*"Spain", (3,0.5)); label(scale(0.9)*"Juan's Stamp Collection", (9,0), S); label(scale(0.9)*"Number of Stamps by Decade", (9,5), N); [/asy] The average price of his '70s stamps is closest to $\text{(A)}\ 3.5 \text{ cents} \qquad \text{(B)}\ 4 \text{ cents} \qquad \text{(C)}\ 4.5 \text{ cents} \qquad \text{(D)}\ 5 \text{ cents} \qquad \text{(E)}\ 5.5 \text{ cents}$

Novosibirsk Oral Geo Oly IX, 2020.3

Point $P$ is chosen inside triangle $ABC$ so that $\angle APC+\angle ABC=180^o$ and $BC=AP.$ On the side $AB$, a point $K$ is chosen such that $AK = KB + PC$. Prove that $CK \perp AB$.

2012 Princeton University Math Competition, A3

Tags: geometry
Let $ABC$ be a triangle with incenter $I$, and let $D$ be the foot of the angle bisector from $A$ to $BC$. Let $\Gamma$ be the circumcircle of triangle $BIC$, and let $PQ$ be a chord of $\Gamma$ passing through $D$. Prove that $AD$ bisects $\angle PAQ$.

2018 CMIMC Geometry, 9

Tags: conic , ellipse , geometry
Suppose $\mathcal{E}_1 \neq \mathcal{E}_2$ are two intersecting ellipses with a common focus $X$; let the common external tangents of $\mathcal{E}_1$ and $\mathcal{E}_2$ intersect at a point $Y$. Further suppose that $X_1$ and $X_2$ are the other foci of $\mathcal{E}_1$ and $\mathcal{E}_2$, respectively, such that $X_1\in \mathcal{E}_2$ and $X_2\in \mathcal{E}_1$. If $X_1X_2=8, XX_2=7$, and $XX_1=9$, what is $XY^2$?

2021 LMT Spring, A19

Tags:
Let $S$ be the sum of all possible values of $a \cdot c$ such that $$a^3+3ab^2-72ab+432a=4c^3$$ if $a$, $b$, and $c$ are positive integers, $a+b > 11$, $a > b-13$, and $c \le 1000$. Find the sum of all distinct prime factors of $S$. [i]Proposed by Kevin Zhao[/i]

2022 Balkan MO Shortlist, C3

Find the largest positive integer $k{}$ for which there exists a convex polyhedron $\mathcal{P}$ with 2022 edges, which satisfies the following properties: [list] [*]The degrees of the vertices of $\mathcal{P}$ don’t differ by more than one, and [*]It is possible to colour the edges of $\mathcal{P}$ with $k{}$ colours such that for every colour $c{}$, and every pair of vertices $(v_1, v_2)$ of $\mathcal{P}$, there is a monochromatic path between $v_1$ and $v_2$ in the colour $c{}$. [/list] [i]Viktor Simjanoski, Macedonia[/i]

2020 CCA Math Bonanza, I4

Tags:
Alan, Jason, and Shervin are playing a game with MafsCounts questions. They each start with $2$ tokens. In each round, they are given the same MafsCounts question. The first person to solve the MafsCounts question wins the round and steals one token from each of the other players in the game. They all have the same probability of winning any given round. If a player runs out of tokens, they are removed from the game. The last player remaining wins the game. If Alan wins the first round but does not win the second round, what is the probability that he wins the game? [i]2020 CCA Math Bonanza Individual Round #4[/i]