Found problems: 85335
2004 Croatia National Olympiad, Problem 1
Find all real solutions of the system of equations
$$x^2-y^2=2(xz+yz+x+y),$$$$y^2-z^2=2(yx+zx+y+z),$$$$z^2-x^2=2(zy+xy+z+x).$$
2019 LIMIT Category A, Problem 6
Vessel $A$ has liquids $X$ and $Y$ in the ratio $X:Y=8:7$. Vessel $B$ holds a mixture of $X$ and $Y$ in the ratio $X:Y=5:9$. What ratio should you mix the liquids in both vessels if you need the mixture to be $X:Y=1:1$?
$\textbf{(A)}~4:3$
$\textbf{(B)}~30:7$
$\textbf{(C)}~17:25$
$\textbf{(D)}~7:30$
2016 Latvia National Olympiad, 2
An acute triangle $ABC$ ($AB > AC$) has circumcenter $O$, but $D$ is the midpoint of $BC$. Circle with diameter $AD$ intersects sides $AB$ and $AC$ in $E$ and $F$ respectively. On segment $EF$ pick a point $M$ so that $DM \parallel AO$. Prove that triangles $ABD$ and $FDM$ are similar.
1994 All-Russian Olympiad, 7
A trapezoid $ABCD$ ($AB ///CD$) has the property that there are points $P$ and $Q$ on sides $AD$ and $BC$ respectively such that $\angle APB = \angle CPD$ and $\angle AQB = \angle CQD$. Show that the points $P$ and $Q$ are equidistant from the intersection point of the diagonals of the trapezoid.
(M. Smurov)
2021 Poland - Second Round, 4
There are real numbers $x, y$ such that $x \ne 0$, $y \ne 0$, $xy + 1 \ne 0$ and $x + y \ne 0$. Suppose the numbers $x + \frac{1}{x} + y + \frac{1}{y}$ and $x^3+\frac{1}{x^3} + y^3 + \frac{1}{y^3}$ are rational. Prove that then the number $x^2+\frac{1}{x^2} + y^2 + \frac{1}{y^2}$ is also rational.
2019 USAMTS Problems, 4
Princess Pear has $100$ jesters with heights $1, 2, \dots, 100$ inches. On day $n$ with $1 \leq n \leq 100$, Princess Pear holds a court with all her jesters with height at most $n$ inches, and she receives two candied cherries from every group of $6$ jesters with a median height of $n - 50$ inches. A jester can be part of multiple groups.
On day $101$, Princess Pear summons all $100$ jesters to court one final time. Every group of $6$ jesters with a median height of 50.5 inches presents one more candied cherry to the Princess. How many candied cherries does Princess Pear receive in total?
Please provide a numerical answer (with justification).
2008 BAMO, 3
$N$ teams participated in a national basketball championship in which every two teams played exactly one game. Of the $N$ teams, $251$ are from California. It turned out that a Californian team Alcatraz is the unique Californian champion (Alcatraz has won more games against Californian teams than any other team from California). However, Alcatraz ended up being the unique loser of the tournament because it lost more games than any other team in the nation!
What is the smallest possible value for $N$?
1987 AMC 8, 19
A calculator has a squaring key $\boxed{x^2}$ which replaces the current number displayed with its square. For example, if the display is $\boxed{000003}$ and the $\boxed{x^2}$ key is depressed, then the display becomes $\boxed{000009}$. If the display reads $\boxed{000002}$, how many times must you depress the $\boxed{x^2}$ key to produce a displayed number greater than $500$?
$\text{(A)}\ 4 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 250$
1966 AMC 12/AHSME, 33
If $ab\ne0$ and $|a|\ne|b|$ the number of distinct values of $x$ satisfying the equation
\[\dfrac{x-a}{b}+\dfrac{x-b}{a}=\dfrac{b}{x-a}+\dfrac{a}{x-b}\]
is:
$\text{(A)}\ \text{zero}\qquad
\text{(B)}\ \text{one}\qquad
\text{(C)}\ \text{two}\qquad
\text{(D)}\ \text{three}\qquad
\text{(E)}\ \text{four}$
2013 IPhOO, 2
One hundred billion light years from Earth is planet Glorp. The inhabitants of Glorp are intelligent, uniform, amorphous beings with constant density which can modify their shape in any way, and reproduce by splitting. Suppose a Glorpian has somehow formed itself into a spinning cylinder in a frictionless environment. It then splits itself into two Glorpians of equal mass, which proceed to mold themselves into cylinders of the same height, but not the same radius, as the original Glorpian. If the new Glorpians' angular velocities after this are equal and the angular velocity of the original Glorpian is $\omega$, let the angular velocity of the each of the new Glorpians be $\omega'$. Then, find $ \left( \frac {\omega'}{\omega} \right)^{10} $.
[i](B. Dejean, 3 points)[/i]
1952 Putnam, B2
Find the surface generated by the solutions of \[ \frac {dx}{yz} = \frac {dy}{zx} = \frac{dz}{xy}, \] which intersects the circle $y^2+ z^2 = 1, x = 0.$
1991 IMTS, 2
Note that 1990 can be "turned into a square" by adding a digit on its right, and some digits on its left; i.e., $419904 = 648^2$. Prove that 1991 cannot be turned into a square by the same procedure; i.e., there are no digits $d,x,y,..$ such that $...yx1991d$ is a perfect square.
2019 Iran MO (3rd Round), 1
Hossna is playing with a $m*n$ grid of points.In each turn she draws segments between points with the following conditions.
**1.** No two segments intersect.
**2.** Each segment is drawn between two consecutive rows.
**3.** There is at most one segment between any two points.
Find the maximum number of regions Hossna can create.
MathLinks Contest 5th, 2.2
Suppose that $\{D_n\}_{n\ge 1}$ is an finite sequence of disks in the plane whose total area is less than $1$.
Prove that it is possible to rearrange the disks so that they are disjoint from each other and all contained inside a disk of area $4$.
PEN O Problems, 31
Prove that, for any integer $a_{1}>1$, there exist an increasing sequence of positive integers $a_{1}, a_{2}, a_{3}, \cdots$ such that \[a_{1}+a_{2}+\cdots+a_{n}\; \vert \; a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\] for all $n \in \mathbb{N}$.
2015 VJIMC, 2
[b]Problem 2[/b]
Determine all pairs $(n, m)$ of positive integers satisfying the equation
$$5^n = 6m^2 + 1\ . $$
2013 IMAC Arhimede, 2
For all positive integer $n$, we consider the number $$a_n =4^{6^n}+1943$$ Prove that $a_n$ is dividible by $2013$ for all $n\ge 1$, and find all values of $n$ for which $a_n - 207$ is the cube of a positive integer.
2018 Online Math Open Problems, 28
Let $\omega$ be a circle centered at $O$ with radius $R=2018$. For any $0 < r < 1009$, let $\gamma$ be a circle of radius $r$ centered at a point $I$ satisfying $OI =\sqrt{R(R-2r)}$. Choose any $A,B,C\in \omega$ with $AC, AB$ tangent to $\gamma$ at $E,F$, respectively. Suppose a circle of radius $r_A$ is tangent to $AB,AC$, and internally tangent to $\omega$ at a point $D$ with $r_A=5r$. Let line $EF$ meet $\omega$ at $P_1,Q_1$. Suppose $P_2,P_3,Q_2,Q_3$ lie on $\omega$ such that $P_1P_2,P_1P_3,Q_1Q_2,Q_1Q_3$ are tangent to $\gamma$. Let $P_2P_3,Q_2Q_3$ meet at $K$, and suppose $KI$ meets $AD$ at a point $X$. Then as $r$ varies from $0$ to $1009$, the maximum possible value of $OX$ can be expressed in the form $\frac{a\sqrt{b}}{c}$, where $a,b,c$ are positive integers such that $b$ is not divisible by the square of any prime and $\gcd (a,c)=1$. Compute $10a+b+c$.
[i]Proposed by Vincent Huang
2023 CCA Math Bonanza, I11
Let $ABC$ be a triangle such that $AB=\sqrt{10}, BC=4,$ and $CA=3\sqrt{2}.$ Circle $\omega$ has diameter $BC,$ with center at $O.$ Extend the altitude from $A$ to $BC$ to hit $\omega$ at $P$ and $P',$ where $AP < AP'.$ Suppose line $P'O$ intersects $AC$ at $X.$ Given that $PX$ can be expressed as $m\sqrt{n}-\sqrt{p},$ where $n$ and $p$ are squarefree, find $m+n+p.$
[i]Individual #11[/i]
2008 Tournament Of Towns, 3
Alice and Brian are playing a game on a $1\times (N + 2)$ board. To start the game, Alice places a checker on any of the $N$ interior squares. In each move, Brian chooses a positive integer $n$. Alice must move the checker to the $n$-th square on the left or the right of its current position. If the checker moves off the board, Alice wins. If it lands on either of the end squares, Brian wins. If it lands on another interior square, the game proceeds to the next move. For which values of $N$ does Brian have a strategy which allows him to win the game in a finite number of moves?
Today's calculation of integrals, 872
Let $n$ be a positive integer.
(1) For a positive integer $k$ such that $1\leq k\leq n$, Show that :
\[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\]
(2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$
If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$
(3) Find $\lim_{n\to\infty} S_n.$
2021 Honduras National Mathematical Olympiad, Problem 1
In a circle, $15$ equally spaced points are drawn and arbitrary triangles are formed connecting $3$ of these points. How many non-congruent triangles can be drawn?
2009 Germany Team Selection Test, 3
There is given a convex quadrilateral $ ABCD$. Prove that there exists a point $ P$ inside the quadrilateral such that
\[
\angle PAB \plus{} \angle PDC \equal{} \angle PBC \plus{} \angle PAD \equal{} \angle PCD \plus{} \angle PBA \equal{} \angle PDA \plus{} \angle PCB = 90^{\circ}
\]
if and only if the diagonals $ AC$ and $ BD$ are perpendicular.
[i]Proposed by Dusan Djukic, Serbia[/i]
1976 AMC 12/AHSME, 28
Lines $\mathit{L}_1,\mathit{L}_2,\dots,\mathit{L}_{100}$ are distinct. All lines $\mathit{L}_{4n}$, $n$ a positive integer, are parallel to each other. All lines $\mathit{L}_{4n-3}$, $n$ a positive integer, pass through a given point $\mathit{A}$. The maximum number of points of intersection of pairs of lines from the complete set $\{\mathit{L}_1,\mathit{L}_2,\dots,\mathit{L}_{100}\}$ is
$\textbf{(A) }4350\qquad\textbf{(B) }4351\qquad\textbf{(C) }4900\qquad\textbf{(D) }4901\qquad \textbf{(E) }9851$
2020 IMO Shortlist, C4
The Fibonacci numbers $F_0, F_1, F_2, . . .$ are defined inductively by $F_0=0, F_1=1$, and $F_{n+1}=F_n+F_{n-1}$ for $n \ge 1$. Given an integer $n \ge 2$, determine the smallest size of a set $S$ of integers such that for every $k=2, 3, . . . , n$ there exist some $x, y \in S$ such that $x-y=F_k$.
[i]Proposed by Croatia[/i]